УДК 517.551

MATEMATUKA

Ф. А. БЕРЕЗИН

КВАНТОВАНИЕ В КОМПЛЕКСНЫХ ОГРАНИЧЕННЫХ ОБЛАСТЯХ

(Представлено академиком С. М. Никольским 19 XII 1972)

1. Общая задача квантования. Пусть М — многообразие, на котором бесконечно дифференцируемые функции образуют алгебру Ли относительно скобки Пуассона

$$[f_1, f_2] = \sum \omega^{ik} (x)^{\frac{1}{2}} \frac{\partial f_1}{\partial x^i} \frac{\partial f_2}{\partial x^k}. \tag{1}$$

Задача квантования состоит из двух частей. Во-первых, требуется построить семейство ассоциативных алгебр с инволюцией $A_h(M)$, h > 0, с перечисленными ниже свойствами, элементами которых служат дифференцируемые функции на M (не обязательно все). Во-вторых, следует построить линейные представления этих алгебр в гильбертовом пространстве. Параметр h является постоянной Планка.

Произведение $f_1, f_2 \in A_h$ обозначим $f_1 * f_2$. Отметим, что $f_1 * f_2$ зависит от

h. Алгебры A_h должны обладать свойствами:

1) ЕСЛИ $f(h|x) = (f_1 * f_2)(x)$, то $f(0|x) = f_1(x) \cdot f_2(x)$. 2) ЕСЛИ $f(h|x) = h^{-1}[(f_1 * f_2)(x) - (f_2 * f_2)(x)]$, то

 $\lim f(h|x) = [f_1, f_2]$, где $[f_1, f_2]$ — скобка Пуассона (1).

Свойства 1) и 2) называются законом соответствия. Их выполнения следует добиться в первую очередь. Следующие ниже свойства обязательны в меньшей степени.

3) Инволюция в A_h совпадает с комплексным сопряжением.

4) В A_h есть единица.

4') Единицей служит функция f(x) = 1.

- 5) В A_h существует линейный функционал sp f (след), определенный па подмножестве $\widetilde{A}_h \subset A_h$ и обладающий свойством $\operatorname{sp}(f_1 * f_2) = \operatorname{sp}(f_2 * f_1)$, при $f_1 * f_2 \subseteq \widetilde{A}_h$, также $f_2 * f_1 \subseteq \widetilde{A}_h$.
 - 5') sp $f=\int f(x)\ d\mu(x)$, где $\mu(x)$ некоторая мера на M.

6) Сопоставление $M \to A_h(M)$ должно быть естественным, т. е. перестановочным с морфизмами симплектических многообразий, принадлежащими к некоторой заранее зафиксированной категории.

Последняя оговорка существениа, так как добиться перестановочности со всеми морфизмами симплектических многообразий, по-видимому, невозможно. В работе строятся алгебры A_h для случая, когда многообразием

служит ограниченная область в комплексном пространстве.

2. Построение алгебр A_h . Пусть Ω — ограниченная область в C^n . Элементами кольца A_h будем считать вещественно-апалитические функции $f(z,\bar{z})$ в Ω , допускающие аналитическое продолжение $f(z,\bar{v})$ в $\Omega \times \Omega$. Закон умножения в A_h будем искать в виде

$$(f_1 \times f_2)(z, \overline{z}) = \int f_1(z, \overline{v}) f_2(v, \overline{z}) G_h(v, \overline{v}) z, \overline{z}) d\mu(v, \overline{v}), \tag{2}$$

где $d\mu(z,\bar{z}) = \det \|\partial^2 K / dz_i d\bar{z}_h\|$, $\prod dz d\bar{z}$, $K = K(z,\bar{z})$ — керн-функция Ω , $dz\,d\overline{z}=\int dx_k\,dy_k,\,x_k={
m Re}\,z_k,\,y_k={
m Im}\,z_k.\,\,\,d\mu\,(z,\overline{z})$ — инвариантная мера в Ω , если Ω — однородная область.

Теорема 1. 1) Ассоциативность умножения (2) эквивалентна равенству

$$G_h(v, \bar{v} \mid z, \bar{z}) = F_h(v, \bar{v}) F_h(z, \bar{z}) F_h^{-1}(z, \bar{v}) F_h^{-1}(v, \bar{z}), \tag{3}$$

где F_h , $F_h-\partial$ ве функции на Ω , причем F_h- вещественно-аналитическая функция, допускающая аналитическое продолжение на $\Omega \times \Omega$.

2) Условия 5), 5') п. 1 эквивалентны равенству $\tilde{F}_h(v, \bar{v}) = c(h)F_h(v, \bar{v})$, $r\partial e \ c(h)$ — некоторая функция (ее определение связано с условиями 1), 2),

Приведем теперь конструкцию функции F_h , позволяющую удовлетворить всем требованиям 1) -5') п. 1 в случае, если область Ω однородна, и всем, кроме, быть может, свойства 4), 4') в общем случае.

Теорема 2. 1) Пусть $F_h(z,\bar{z}) = K^{-1/h}(z,\bar{z})$, где $K(z,\bar{z}) - \kappa$ ерн-функция области Ω , $\tilde{F}_h(v, \bar{v}) = c(h)F_h(v, \bar{v})$, $c(h) = h^{-n}c_1(h)$, $n = \dim_c \Omega$, $c_1(0) = 1$.

Tогда закон умножения в A_h , определяемый формулами (2) и (3) , удов-

летворяет всем требованиям n. 1, кроме, быть может, 4), 4').

2) В случае, если область Ω однородная и круговая, требования 4), 4') выполняются при

$$c(h) = \mu(\Omega)^{1/h} \left[\int K(z, \bar{z})^{-1/h} d\mu(z, \bar{z}) \right]^{-1}, \tag{4}$$

 $\partial e \mu(\Omega)$ — эвклидов объем Ω .

Доказательство состоит в применении метода перевала к интегралу

$$(I_h \Phi)(z, \overline{z}) = \int \Phi(v, \overline{v}) G_h(v, \overline{v} \mid z, \overline{z}) d\mu(v, \overline{v}).$$
 (5)

Легко проверяется, что функция $K(z, \overline{v}) K(v, \overline{z}) K^{-1}(z, \overline{z}) K^{-1}(v, \overline{v})$ при фиксированных z, \bar{z} имеет, как функция $v, \bar{v},$ единственный максимум при $z=v,\ \overline{z}=\overline{v}.$ Обычные соображения позволяют дать асимптотическое разложение интеграла (5) с точностью до o(h):

$$(I_h\Phi)(z,\bar{z}) = \Phi(z,\bar{z}) + h(\Delta\Phi(z,\bar{z}) + \alpha(z,\bar{z})\Phi(z,\bar{z})) + o(h), \qquad (6)$$

где Δ — оператор Лапласа — Бельтрами метрики Бергмана.

Из (6) следуют свойства 1), 2) п. 1. 2-е утверждение теоремы 2 следует

из приводимой ниже теоремы 3.

3. Представления. Обозначим через F_h гильбертово пространство аналитических функций в Ω со скалярным произведением

$$(f,g) = c(h) \int f(z) \, \overline{g(z)} \, K^{-1/h}(z,\overline{z}) \, d\mu(z,\overline{z}), \tag{7}$$

где c(h) — та же константа, что в теореме 2.

Для дальнейшего основную роль играет

Tеорема 3. $\varPi y c D - o \partial D p o \partial D a s o \delta D c C d a$

1) при любом h>0 функция $K(z,\overline{v})^{1/h}$ является однозначной аналити-

ческой функцией в $\Omega \times \Omega$.

2) Функция $[K(z, \overline{v}) / K(v, \overline{v})]^{1/h}$ при любом h > 0 обладает воспроизводящим свойством: $npu f \in F_h$

$$f(z) = c(h) \int f(v) [K(z, \overline{v})/K(v, \overline{v})]^{1/h} d\mu'(v, \overline{v}).$$
 (8)

Доказательство. Рассмотрим в F_h ортонормированный базис $\psi_k(z)$ и построим функцию

$$L_h(z,\bar{z}) = \sum \psi_h(z) \, \overline{\psi_h(z)}. \tag{9}$$

Из (9) легко следует, что если z = z(v) — автоморфизм области Ω , то $L_h(z,\overline{z})=L_h(v,\overline{v})\left[\partial\left(v,\overline{v}
ight)/\partial\left(z,\overline{z}
ight)
ight]^{1/h}$. Поэтому функция $L_hL_1^{-1/h}=L_hK^{-1/h}$ инвариантна при всех автоморфизмах Ω. Ввиду однородности отсюда следует, что $L_h(z, \overline{z}) = \sigma(h) K^{1/h}(z, \overline{z})$. (Если c(h) имеет вид (4), то $\sigma(h) = 1$.) Используя воспроизводящее свойство функции L_h , получаем (8).

Теорема 3 позволяет построить представление кольца A_h в пространстве

 F_h по формуле

$$(\widehat{\Phi}f)(z) = c(h) \int \Phi(z, \overline{v}) f(v) \left[K(z, \overline{v}) / K(v, \overline{v}) \right]^{1/h} d\mu(v, \overline{v}), \tag{10}$$

гле $\Phi \in A_h$, Φ — соответствующий оператор в F_h .

4. Симметрические пространства. Если Ω — симметрическое пространство, то может быть получено явное выражение оператора (5) через операторы Лапласа. Ввиду недостатка места, ограничимся случаем, когда Ω — единичный шар в C^n

$$I_h = \prod_{k=0}^{\infty} \left[1 - \frac{h^2 \Delta}{(n+1+kh)(n+1+(k-n)h)}\right]^{-1},$$

где Δ — оператор Лапласа — Бельтрами. Отметим, что керн-функции для

всех классических областей найдены в (1).

5. Связь с другими теориями и возможные обобщения. 1) Пусть M — келерово многообразие с метрикой ds^2 , имеющей глобальный потенциал G, который является вещественно-аналитической функцией на M, имеющей, быть может, особенности на многообразии меньшей размерности. Положим $K_\hbar = \exp\left(\frac{1}{\hbar}G\right)$ и допустим, что K_\hbar^{-1} не имеет особенностей. Рассмотрим пространство F_h аналитических функций на M с суммируемым квадратом по мере $K_h^{-1}d\mu(z,\bar{z})$. $(d\mu(z,\bar{z})$ определяется по метрике ds^2 обычным образом). Функции из F_h могут иметь особенности в нулях K_h^{-1} . Пусть $\psi_h(z)$ — ортонормированный базис в F_h и $L_h(z, \overline{z})$ определяется формулой (8). $L_h(z, \bar{z})$ будем называть вторичной кери-функцией. Пусть E — множество на луче $(0, \infty)$ такое, что $\hat{L_h} = \sigma(h) \hat{K_h}$ при $h \in E$. В случае, если 0 служит предельной точкой для E, предшествующая теория переносится на М без изменений.

Примеры:

1) М — однородная ограниченная область. Как показано в настоящей CTATLE, $L_h(z, \bar{z}) = \sigma(h) K_h(z, \bar{z}), E = (0, 1].$

2)
$$M = C^n$$
, $ds^2 = \sum dz_k d\bar{z}_k$, $G = \sum z_k \bar{z}_k \equiv z\bar{z}$, $K_h = \exp\left(\frac{1}{h}z\bar{z}\right)$, $L_h(z,\bar{z}) = h^{-n}K_h(z,\bar{z})$.

(Пространство F_h есть в этом случае классическое пространство Фока, вве-

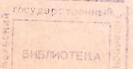
денное в (2).) $E = (0, \infty)$.

3) $M=\dot{S}_2$ — двумерная сфера. В комплексных координатах $ds^2==(1+z\overline{z})^{-2}dz\,d\overline{z},\,G=\ln{(1+z\overline{z})},\,L_h=h^{-1}K_h$ при целом h^{-1} . $E=(1,\,2^{-1},\,$ 3⁻¹,...). Аналогичным образом, как видно из формул Хуа Ло-кена, обстоит дело с любыми компактными симметрическими пространствами, двойственными ограниченным областям. (Во всех этих случаях пространства F_h конечномерны, например, для случая $S_2 \dim F_h = h^{-1}$.

4) M — двумерный цилиндр. $ds^2 = dz \, d\overline{z}$, z = x + iy, $0 \le x \le 2\pi$, $G = \left[\frac{1}{2i}(z-\overline{z})\right]^2$, $L_h \ne \sigma(h) K_h$ ни при каком h > 0.

Отметим в заключение этого пункта, что келерова метрика определена с точностью до множителя. Таким образом, в предлагаемой теории роль планковской постоянной предоставлена этому неопределенному множителю.

2) Изложенная в этой статье конструкция примыкает к общей теории ко- и контра-вариантных символов операторов (3). Функция Ф в (10) слу-



жит ковариантным символом оператора Ф. Оператор (5) преобразует контравариантные символы в ковариантные. Векторы $f_v(z) = K(z, \overline{v})^{1/h}$ игра-

ют роль переполненной системы, лежащей в основе теории (3).

3) Пусть Ω — шар в C^n , G — его группа автоморфизмов, G — универсальная накрывающая G, M — некоторое множество с мерой, z(x), g(x), $x \in M$, — измеримые функции на M со значениями в Ω и G соответственно Группу функций g(x) обозначим G_M , ее естественно считать прямым произведением \varkappa экземпляров G, где \varkappa — мощность множества M. Рассмотрим функционал $R(z,\overline{z}) = -h^{-1} \int \ln K(z(x),\overline{z}(x)) \ d\mu(x)$ от функций z(x) и введем с его помощью скалярное произведение в пространство аналитических функционалов от z(x): $(f,f) = \int |f(z)|^2 \exp R \prod_x d\mu(z(x),\overline{z}(x))$ (конти-

нуальный интеграл в правой части понимается как предел конечнократных, инвариантная мера $d\mu(z,\bar{z})$ нормирована условием $(f_0,f_0)=1,f_0=1)$. Возникающее таким путем гильбертово пространство аналитических функционалов является обобщением обычного фоковского пространства. В нем действует представление группы G_M согласно формуле

$$\left(T_{g(x)}f\right)(z)=f\left(g^{-1}z\right)\exp\left\{h^{-1}\int\ln j\left(g\left(x\right),z\left(x\right)\right)d\mu\left(x\right)\right\},$$

где $g^{-1}z = g^{-1}(x)z(x)$ — результат действия элемента $g^{-1}(x)$ на z(x),

j(g,z) — аналитический якобиан преобразования $z \to g^{-1}z$.

Изложенная конструкция может быть применена к произвольным ограниченным однородным областям. Для симметрических областей, отличных от шара, она приводит к представлению группы G_M в гильбертовом пространстве с индефинитной метрикой, представление является унитарным в пидефинитном смысле.

Московский государственный университет им. М. В. Ломоносова

Поступило 14 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Хуа Ло-кеп, Гармонический анализ функций многих комплексных переменных, ИЛ, 1959. ² В. А. Фок, Zs. Phys., 75, 622 (1932). ³ Ф. А. Березин, Изв. АН СССР, сер. матем., 36, № 5, 1135 (1972).