УДК 535: 375.001.1 XИМИЯ

И. Ф. КОВАЛЕВ, И. В. ШЕВЧЕНКО, член-корреспондент АН СССР М. Г. ВОРОНКОВ, Н. В. КОЗЛОВА

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ ЛИНЕЙНЫХ ПОЛИДИМЕТИЛСИЛОКСАНОВ

Ранее нами изучены спектроскопические свойства циклических олигодиметилсилоксанов $[(CH_3)_2SiO]_n$ (n=4-7) (1, 2) и простейшего представителя линейных метилсилоксанов [(CH₃)₆Si₂]O (³). При этом отмечены большая внутренняя подвижность силоксановых мостиков, характеристичность ряда колебаний, значительная аддитивность в распределении интенсивностей. Целью настоящей работы было исследование колебательных спектров высших полидиметилсилоксанов и определение характера поведения спектроскопических параметров и оптических свойств отдельных связей в их молекулах. Нами изучены колебательные спектры комбинационного рассеяния к.р.с. и и.-к. поглощения трех линейных полидиметилсилоксанов типа HO[(CH₃)₂SiO]_nH, содержащих 340, 2700 и 6750 звеньев (CH₃)₂SiO. При возбуждении чистых жидкостей гелиево-неоновым дазером на приборе «Coderg» получены частоты, степени деполяризации и относительные интенсивности линий в спектрах к.р.с., абсолютные интегральные интенсивности характерных линий, соответствующих валентным колебаниям связей Si-O и Si-C. Эталоном служила линия циклогексана 802 см-і. В и.-к. спектрах полидиметилсилоксанов, а также их растворов в CCl₄, измерены интегральные интенсивности характерных полос. Выполнена интерпретация спектров. Регистрация спектров осуществлена на спектрофотометрах ИКС-14 и UR-20 при комнатной температуре. Спектрограммы обработаны по Иогансену (4). Результаты исследований приведены в табл. 1-3.

В спектре к.р.с. каждого из изученных полидиметилсилоксанов зарегистрировано 11 линий, которые могут быть отнесены к фундаментальным колебаниям, в и.-к. спектре — до 20 соответствующих полос. Одинаковое строение полидиметилсилоксановых цепей рассматриваемого ряда молекул, отличающихся лишь своей длиной, обусловливает стабильное положение максимумов линий и полос. Отнесение частот в целом не вызывает особых затруднений. Они близки к наблюдаемым в спектрах циклоолигодиметилсилоксанов [(CH₃)₂SiO]_n. Метильные заместители представляют собой довольно замкнутые группировки. Линия 2905 см-1, принадлежащая валентному симметричному колебанию у, (С-Н), весьма интенсивна в спектрах к.р.с. и сильно поляризована, линия v_{as} (C-H) ~2965 см⁻¹ в максимуме рассеяния примерно в 2 раза слабее и деполяризована. Интегральные интенсивности A и и.-к. полос аддитивно возрастают с увеличением числа эквивалентных групп в молекуле. На каждую группу СН3 приходится средняя величина A, равная 25 для v. (C-H) и 135·10⁻⁹ см²/молек · сек для v_{as} (C-H). В ряду [(CH₃)₂SiO]_n (n=4-7) наблюдался больший разброс значений A. Средние же величины A для обсуждаемых колебаний в циклоолигодиметилсилоксанах равны соответственно 24 и 136.

Аддитивность в распределении частот и интенсивностей характерна и для деформационных колебаний метильных групп δ_{as} (CH₃), δ_{s} (CH₃) и ρ (CH₃). Первому в спектре к.р.с. каждой из рассматриваемых макромолекул соответствует одна слабая линия ~1410 см⁻¹. В и.-к. спектре полоса δ_{as} (CH₃) расщеплена на несколько компонентов, наиболее интенсивным

Таблица 1

Колебательные спектры полидиметилсилоксанов НО [(CH₈)₂SiO]_nH

)	n = 340		n = 27	700	n = 6750	
Интерпретация	к.р.с.	ик. к.р.с.		ик.	к.р.с.	и,-к.
	0001 (10 0 0)	0000	0000 (0.5.0.0)	0000	0005 (0 0 0)	
$v_{as} (C - H)$ $v_{s} (C - H)$	2964 (10; 0,8) 2905 (21; 0,05)	2963 c. 2905 cp.	2962 (9,5; 0,8) 2905 (21; 0,06)	2962 c. 2904 cp.	2965 (9; 0,8) 2905 (20; 0,07)	2962 c. 2903 cp.
δ _{α8} (CH ₃) {	1413 (1; 0,8)	1445 сл. 1412 ср. 1400 сл.	1410 (1; 0,8)	1445 сл. 1410 ср. 1400 сл.	1410 (1; 0,8)	1442 сл. 1409 ср. 1398 сл.
$\delta_{g} (CH_{3})$ $v_{as} [Si - O (Si)] $	1263 (0,6; 0,7)	1260 o.c. 1091 o.c. 1022 o.c.	1260 (0,6; 0,6)	1258 o.c. 1092 o.c. 1021 o.c.	1261 (0,6; 0,5)	1260 o.c. 1093 o.c. 1020 o.c.
ρ (CH ₃)	863 (0,5; 0,8)	865 cp. 815 c.	862 (0,5; 0,6)	865 cp. 815 c.	862 (0,6; 0,5)	865 cp. 817 c.
v_{as} (Si - C), ρ (CH ₃) v_{s} (Si - C) ρ (CH ₃), ν (Si - C) $\left\{ \right.$	787 (1; 0,8) 707 (6; 0,18) 687 (1; 0,8)	800 o.c. 703 cp. 685 cn. 669 cn. 630 o.cn.	785 (0,8; 0,8) 707 (6,5; 0,17) 685 (0,8; 0,8)	799 o.c.	789 (1; 0,8) 708 (6; 0,18) 686 (0,8; 0,8)	802 о.с. 708 ср. 688 сл. 667 сл. 630 о.сл
$v_g [Si - O(Si)]$	<u>-</u> 490 (10; 0,04)	515 о.сл. 503 о.сл.	<u>-</u> 490 (10; 0.1)	515 о.сл. 503 о.сл. —	<u>-</u> 488 (10; 0,09)	515 о.сл 502 о.сл
δ (CSiO), δ (OSiO), δ (CSiC) {	190 (3; 0,8) 159 (3; 0,8)	395 ep. —		395 cp. —	189 (3; 0,8) 159 (3; 0,8)	395 cp.

Примечания. В и.-к. спектрах в исследованном интервале появления фундаментальных колебаний регистрируются слабые полосы, отнесенные нами к составным и обертонам: 630 и 1476 см⁻¹ — в спектрах всех трех соединений, 1143, 1178, 1214 см⁻¹ — в спектре НД_{сто}ОН. Для спектров к.р.с. в скобках указаны пиковые интенсивности относительно линии 490 см⁻¹ в спектре каждого соединения и степени деполяризации линий.

 ${\rm T\ a\ f\ r\ u\ q\ a\ \ 2}$ Основные параметры и.-к. полос полидимэтилсилоксанов HO [(CH3)2SiO] $_n{\rm H}$

n = 340		n = 2700			n = 6750			
ν	A · 107	Υ	٧	$A \cdot 10^7$	Υ	ν	A · 107	Υ
2963 2905	933 170	23,8 34,9	2962 2904	7186 1322	19,0 27,1	2962 2903	17276 3398	19,3 27,7
1445 1412 1400	404	0 3005	1445 1410 1400	3236	_	1442 1409 1398	8765	_
1260 1091 1022	1939 6731 7722	7,3 38,2 42,6	1258 1092 1021	15489 55484 57798	7,2 40,1 43,2	1260 1093 1020	38214 134545 148951	7,2 38,3 46,3

Примечание. у — частота (см $^{-1}$), A — интегральная интенсивность (см 2 /молек-сек), у — ширина полосы (см $^{-1}$).

из которых является также $\sim 1410~{\rm cm^{-1}}$. Средняя величина суммарной интенсивности и.-к. полос в интервале $1400-1480~{\rm cm^{-1}}$, приходящаяся на одну группу ${\rm CH_3}$, равна 62~(в циклоолигодиметилсилоксанах -69). Колебанию, связанному с симметричным смещением атомов водорода в метильной группе, присоединенной к атому кремния, принадлежит узкая и.-к. полоса $\sim 1260~{\rm cm^{-1}}$ с интенсивностью, равной средней величине A в циклосилоксанах $-286\cdot 10^{-9}~{\rm cm^2/молеk\cdot cek}$ на группу ${\rm CH_3}$. Маятниковые колебания метильных групп лежат в области волновых чисел $800-865~{\rm cm^{-1}}$ и весьма интенсивны в спектрах и.-к. поглощения.

Существенный интерес представляет определение свойств связей Si-O. На долю колебаний антисимметричного растяжения этих связей в соответствии с их ионным характером приходится, как и в циклоолигодиметилсилоксанах, более 50% поглощения. Если в спектрах [(CH₃)₂SiO]_n (n =

Основные параметры линий v_s (Si — O) п v_s (Si — C) в спектрах к.р.с. полидиметилсилоксанов НО $[(CH_3)_2SiO]_n$ Н

		ν _s (Si — O)			v _s (Si — C)			
n Δv ,	Δν, cm ⁻¹	I_{∞}	Рист	S	Δν, CM-1	I_{∞}	Рист	s
340 2700 6750	490 490 488	966 880 781	0.04 0,10 0,09	257 1829 4117	705 706 708	344 309 283	0,18 0,17 0,18	127 932 3215

Таблица 4

Физические свойства полидиметилсилоксанов НО [(CH₃)₂SiO]_nH

n	M	n_D^{20}	d_4^{25}	η №, сп
340	25 000	1,4071	0,976	918
2700	200 000	1,4070	0,968	3·10 ⁵
6750	500 000	1,4048	0,955	>10 ⁷

=4-7) две полосы v_{as} (Si-O) либо не разделяются (в пределах разрешения прибора), либо тесно перекрываются со сдвигом максимумов поглощения в пределах $20-30~{\rm cm^{-1}}$, то в изученных высших полидиметилсилоксанах регистрируются по две и.-к. полосы с постоянными положениями максимумов поглощения и, следовательно, постоянным сдвигом между ними (\sim 70 cm⁻¹). Расщепление согласуется с необходимостью учета межмолекулярного взаимодействия и конформационных преобразований, хотя роль первых нельзя преувеличивать. В спектрах циклоолигодиметилсилоксанов с n=4-7 интенсивность двух компонентов значительно различается, тогда как в рассматриваемых соединениях оба компонента по интенсивности примерно одинаковы: величина A полосы \sim 1090 см⁻¹ на каждую связь Si-O составляет 1000, полосы \sim 1020 см⁻¹ — 1100. В спектрах к.р.с. колебания v_{as} [Si-O(Si)] нами не наблюдались, что соответствует переходам между колебательными уровнями без изменения тензора поляризуемости.

К симметричным колебаниям v. [Si — O(Si)] принадлежат интенсивные поляризованные линии к.р.с. ~490 см-1. Их стандартные интенсивности (S) линейно возрастают с увеличением числа связей Si-O в молекуле. Средняя величина S·100, приходящаяся на каждую связь Si-O, равна 34 пиклогексановым единицам (табл. 3). В и.-к. спектрах в рассматриваемой области регистрируются две слабых полосы поглощения 503 и 515 см-1. Причина расщепления полос связана с межмолекулярными взаимодействиями. Кроме того, возможно появление полос, составных из колебаний мостика v_s (Si — O — Si) и деформационных колебаний остова. Такой, например, может являться очень слабая полоса 630 см-1, наблюдаемая также в циклосилоксанах. Геометрическое среднее значение, полученное в соответствии с правилом сумм (4) из частот симметричных и несимметричных валентных колебаний силоксановой цепи, равно 828 см-1, что соответствует небольшому сдвигу в длинноволновом направлении по сравнению с низшими полиметилсилоксанами типа $(CH_3)_sSiO [(CH_3)_2SiO]_nSi(CH_3)_s$ (5), в спектрах которых средняя величина \bar{v} [Si — O(Si)] колеблется в пределах 830-845 см⁻¹ при n=1-6. В соединениях с разветвленной силоксановой ценью геометрическое среднее значение $\bar{\mathbf{v}}$ [Si — O(Si)] находится в интервале 845-865 см-1 (6). Полоса 707 см-1 проявляется также довольно интенсивно в спектрах к.р.с. и, несомненно, относится к симметричному валентному колебанию связи Si-C. Средняя интенсивность $S\cdot 100$ на одну

связь Si—C составляет 20 циклогексановых единиц. Более слабая размытая полоса 685 см⁻¹ существенно связана также с маятниковыми колебаниями метильных групп. Антисимметричному колебанию v_{as} (Si — C) соответствует частота в интервале 785-800 см⁻¹. Вообще совокупность частот в интервале 660-870 см⁻¹ в спектрах рассматриваемых линейных полидиметилсилоксанов характерна для группы (CH₃)-Si.

Низкие частоты 159, 190 и 395 см⁻¹ характерны для деформационных колебаний остова. Условия характеристичности и расчеты показывают, что линия 190 см⁻¹ связана в первую очередь с симметричной деформацией

углов C Si C.

Следует ожидать значительно более слабого проявления полос, соответствующих колебаниям связи О—Н. В области существования валентных колебаний этой связи регистрируется весьма слабая относительно других полоса вблизи 3100 см⁻¹.

Исследованные соединения представляют собой вязкие прозрачные

жидкости. Их физические свойства указаны в табл. 4.

Выражаем глубокую признательность А. В. Иогансену за любезное предоставление возможности производства измерений спектров к.р.с. в его лаборатории.

Саратовский педагогический институт Иркутский институт органической химии Сибирского отделения Академии наук СССР

Поступило 4 IV 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. Ф. Ковалев, Л. А. Озолин, М. Г. Воронков, ДАН, 181, 577 (1968). ² И. Ф. Ковалев, В. А. Арбузова и др., ДАН, 183, 544 (1968). ³ И. Ф. Ковалев, П. А. Озолин и др., Сборн. Оптика и спектрография, 3, «Наука», 1967, стр. 301. ⁴ А. В. Иогансен, Оптика и спектроскопия, 16, 813 (1964). ⁵ К. Кольрауш, Спектры комбинационного рассеяния, ИЛ, 1952. ⁶ H. Kriegsmann, Zs. Elektrochem., 64, 541 (1960).