ГЕОХИМИЯ

Р. Д. ГАВРИЛИН, В. Н. ВОЛКОВ, Е. В. НЕГРЕЙ, О. А. ДЕВИНА ФОСФОР В ВЕРТИКАЛЬНЫХ СЕЧЕНИЯХ АПИКАЛЬНОЙ ЧАСТИ ГРАНИТНОГО ИНТРУЗИВА

(Представлено академиком Д. С. Коржинским 31 V 1972)

Наши данные о геохимии фосфора — одного из компонентов анионной части гранитного расплава — крайне скудны (¹) и основаны главным образом на общих закономерностях химии фосфора и немногочисленных результатах физико-химических экспериментов (²). Существуют предположения об участии этого элемента и его соединений в летучих погонах гранитных магм (³). Однако прямые данные, указывающие на характер миграционной способности фосфора в гранитном расплаве и его присутствие в магматических флюидах или сквозьмагматических растворах (¹), отсутствуют. В некоторой степени этот пробел восполняется в данной статье, в которой рассматривается первичное распределение фосфора в вертикальных сечениях сложного гранитного тела на примере глубоко вскрытого палеогенового Раумидского массива на Памире (Рушанский хребет).

Постскладчатый Раумидский массив (95 м²) сложен гранитами шести последовательных фаз внедрения (⁵), представленных близкими по составу порфировидными лейкократовыми биотитовыми гранитами. Массив в целом имеет форму штока с крутыми боковыми контактами и пологой куполообразной кровлей, эродированной в центральной части. Амплитуда вертикального вскрытия массива от реликтов кровли до нижних обнажений гранитов составляет 2—2,1 км, а для отдельных фаз и их частных разрезов по отдельным долинам — несколько меньше (табл. 1). Опробованием

Таблица 1 ¶ Химический состав гранитов второй и пятой фаз в вертикальном разрезе (%)

and annual	Вторая фаза							Пятая фаза					
Окисел	Nº 881-1 3600 m *	Nº 937-1 3600 м	Ne 837-1 3800 M	Nº 886-1 4000 M	№ 929-1 4100 м	Nº 928-1 4300 M	Nº 934-1 4700 M	Nº 939-2 3700 M	Ne 858-1 3800 m	J. 968 4000 M	Ns 859-1 4100 m	Nº 834-1 4400 M	Nº 942-1 4600 M
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₄ Fe ₂ O ₅ MgO CaO Na ₂ O K ₂ O H ₂ O H ₂ O H ₂ O CO ₂ S ₀ O ₆ M P ₂ O ₅	75,80 0,06 12,22 0,37 1,21 0,02 0,42 1,33 3,56 4,38 0,03 He outp. To me To me 0,05	75,58 0,16 12,25 0,59 0,98 0,04 0,20 1,02 3,63 4,38 0,17 0,51 0,45 0,02	75,09 0,06 12,22 0,01 1,62 0,02 0,21 1,62 3,61 4,31 0,03 He on	75,31 0,06 12,60 0,02 1,44 0,02 0,42 1,48 3,67 4,50 0,07 penen.	75,27,0,15 12,60 0,77 0,91 0,04 0,09 0,89 3,64 4,52 0,19 0,38 0,11 0,02	75,37 0,14 12,59 0,62 1,00 0,04 0,08 0,99 4,00 4,23 0,31 0,46 0,27 0,02	75,64 0,13 12,24 1,18 0,80 0,04 0,07 0,81 3,55 4,33 0,25 0,39 0,33 0,03	0,10 12,76 0,58 0,67 0,04 0,37 0,87 3,64 4,58 0,16 0,53		76,01 0,08 12,59 0,25 0,63 C _J . 0,11 1,03 3,80 4,51 0,29 He onp. To жe 0,00 He onp. 0,52	75,02 0,05 12,89 0,58 0,67 0,02 0,25 0,81 4,06 4,51 0,26 0,46 0,13 0,02 0,03	76,45 0,08 12,41 0,59 0,49 0,04 0,49 0,88 3,34 4,25 0,22 He oup. To жe 0,02 0,01	76,08 0,05 12,37 0,78 0,71 0,18 0,15 0,81 3,86 4,41 0,20 0,59 0,10 0,00 0,04
Σ	100,10	100,02	99,69	100,20	99,63	100,24	99,90	100,35	99,74	99,82	99,90	99,85	100,32

[•] Для каждой пробы указана абсолютная высота.

Распределение фосфора в гранитах вертикальных сечений различных фаз Раумидского массива (главная фация)

Абс. высота м		Втора	ая фаза		Пятая фаза					
	разрез Ма	уджикен	разрез	в Нирв	разрез	Ухтон	разрез Нирв			
	№ пробы	P, 10 ⁻³ %	№ пробы	P, 10 ⁻³ %	№ пробы	P, 10 ⁻³ %	№ пробы	P, 10-3 %		
4700	961-4 934-1	$\begin{bmatrix} 17\\17 \end{bmatrix}$ 17								
4600	933-1	23	4 118		860-2a 942-1	11 9 10				
4500	921-1 921-5	$\begin{bmatrix} 17 \\ 12 \end{bmatrix}$ 15	M. Alice			mil M.	- 1- Tu			
4400	-1-18	- 1	828-6	14	1 3 1 1 1 1		115	7		
4300	928-1 927-1	$\left\{\begin{array}{c}18\\22\end{array}\right\}$ 20	839-1a	21			114	8		
4200	000.4	04.5	150		110	7 6	969	6		
4100	886-1 929-1	$\left\{\begin{array}{c} 21 \\ 20 \end{array}\right\} 21$	838-5	15	335-1	р	Carlow W			
4000	323-1		844-1	15		West res	968	7		
3900	930-1 887-1	$\begin{bmatrix} 23 \\ 25 \end{bmatrix} 24$		Something to		Mark the	113	9		
3800	007-1	20)	11-75-14-9			NEW YEAR	967	11		
3700	2 / 12				П33	14	The Line			
3600	937-1	$\begin{bmatrix} 20 \\ 21 \end{bmatrix}$ 21					313-1	10		
3500	936-1	41)	829-1	24			113	12		

охвачены наиболее протяженные по вертикали тела гранитов второй и пятой фаз.

Граниты второй фазы слагают шток с пологой кровлей, приуроченной к внутренней части массива и составляющей около 56% его объема. Пятая фаза относится к категории дополнительных интрузивов по терминологии В. С. Коптева-Дворникова (6) и представлена небольшим штокообразным телом, не превышающим 7% от объема массива.

Детальные петрографические наблюдения показали, что минеральные составы гранитов каждой из фаз массива близки между собой и во второй и пятой фазах соответственно равны (об.%): кварц 35,5—34,5; калишпат 31 и 32,1; плагиоклаз (в разных генерациях — № 18—25) 29,3—30 и биотит 4—2,7. Химический состав гранитов обеих фаз также близок. Силикатные анализы гранитов, взятых с разных гипсометрических уровней в обеих интрузивных фазах, обнаруживают выдержанность их состава (см. табл. 1). Граниты вторичными процессами практически не изменены.

Вертикальные разрезы в каждой фазе приходились с таким расчетом, чтобы они с наибольшей вероятностью отвечали отвесному направлению в интрузивах. Во второй фазе разрез по р. Мауджикен пройден в центральной части интрузива и представляет главную его фацию. Разрез по р. Нирв расположен в 4 км северо-восточнее первого разреза и находится ближе к контакту интрузива с вмещающими породами, характеризуя те же по составу граниты, но переходные от главной фации к эндоконтактовой. В эндоконтактах второй фазы происходит лишь уменьшение зернистости гранитов. Разрезы в интрузиве пятой фазы по долинам рек Ухтон и Нирв относятся к главной фации и отстоят в 2 км друг от друга.

Фосфор определялся колориметрическим методом в азотнокислом растворе в виде фосфорномолибденово-ванадиевого комплекса. Точность определения $\pm 10\%$, чувствительность $2 \cdot 10^{-3}\%$. Результаты определения фосфора в гранитах Раумидского массива представлены в табл. 2. Их анализ позволяет сделать следующие выводы:

1. В вертикальных сечениях всех четырех разрезов устанавливается небольшое, но устойчивое уменьшение содержаний фосфора по направлению к апикальным частям интрузивных тел. В разрезе по р. Нирв (вторая фаза) это уменьшение затушевывается флюктуациями содержания фосфо-

ра в верхней части разреза.

2. В горизонтальных сечениях при переходе от пород главной фации по направлению к эндоконтактовой происходит незначительное уменьшение концентраций фосфора. Концентрации его в отдельных точках этого разреза ниже, чем в апикальной части разреза главной фации. Таким образом, проявляется общая тенденция обеднения фосфором внешних частей интрузивных тел — апикальных и экдоконтактовых.

3. С переходом от пород ранней фазы (вторая) к поздней (пятая) со-

держания фосфора уменьшаются почти в 2 раза.

4. В описываемых гранитах фосфор фиксируется в апатите и в значительно более редких ксепотиме и монаците. Микроскопические исследования показали, что выделение апатита приурочено к поздней стадии кристаллизации гранитов и происходит одновременно с биотитом, когда выпадает почти вся масса фосфора породы. Место в структуре гранитов ксенотима и мопацита неизвестно, но благодаря очень малому их содержанию опи не впосят существенной доли в общий баланс фосфора. Количество апатита в вертикальных сечепиях второй и пятой фаз уменьшается вверх по разрезу (7). Соответствие в характере распределения фосфора и его минеральной фазы — апатита показывает, что в гранитном расплаве отсутствует свободная подвижная форма этого элемента.

Поскольку расплавы дополнительных фаз образуются в глубинных частях интрузивных камер и отличаются пониженными концентрациями фосфора, можно предположить, что увеличение содержания этого химического элемента с глубиной характерно для апикальных частей интрузивов, а на более глубоких их уровнях возможны иные, в том числе и пониженные,

содержания фосфора.

Институт геохимии и аналитической химин им. В. И. Вернадского

Поступило 29 V 1972

Академии наук СССР Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. B. Vistelius, V. J. Hurst, Bull. Geol. Soc. Am., 75, № 11 (1964). ² О. А. Есин, П. В. Гельд, Физическая химия пирометаллургических процессов, ч. II, 1966. ³ S. R. Nockolds, J. Geol., 41, № 6 (1933). ⁴ Д. С. Коржинский, Изв. АН СССР, сер. геол., № 2 (1952). ⁵ В. Н. Волков, Бюлл. МОИП, отд. геол., № 5 (1970). ⁶ В. С. Коптев-Дворников, Изв. АН СССР, сер. геол., № 4 (1952). ⁷ В. С. Коптев-Дворников, В. Н. Волков и др., Сборн. Матер. II среднеазиатского регионального петрографического совещания, Душанбе, 1971.