УЛК 518.731.343.1

MATEMATUKA

Академик Н. Н. КРАСОВСКИЙ, В. Д. БАТУХТИН

О НЕЛИНЕЙНОЙ ДИФФЕРЕНЦИАЛЬНОЙ ИГРЕ СБЛИЖЕНИЯ — УКЛОНЕНИЯ

Рассматриваются позиционная дифференциальная игра сближения фазовой точки x[t] с замкнутым множеством M не позже, чем к некоторому моменту ϑ^0 , и связанная с ней дифференциальная игра уклонения вплоть до этого момента ϑ^0 (1). Устанавливаются достаточные условия успешного завершения этих игр. В статье используются понятия и обозначения из работ $(^{2-4})$.

Пусть движение управляемой системы описывается уравнением

$$dx / dt = f(t, x, u, v), \quad x(t_0) = x_0,$$
 (1)

где x-n-мерный фазовый вектор, u и v-векторные управления игроков, стесненные ограничениями $u \in P$, $v \in Q$, P и Q-компакты, непрерывная функция f(t,x,u,v) имеет непрерывные частные производные $\partial f_i(t,x,u,v)$ / ∂x_i , $i,j=1,2,\ldots,n$, и удовлетворяет условням равномерной продолжимости решений (2).

Рассмотрим проблему сближения с множеством М.

Задата о сближении. Построить стратегию (2) $U^*(t,x)$, которая гарантирует встречу точки x[t] с множеством M из позиции $\{t_0,x_0\}$ к мо-

менту ϑ° .

Следуя (²), будем рассматривать программные управления — меры $\eta(dt,du,dv)$ и порождаемые ими программные движения $x(t)=x(t;t_*,x_*,\eta),\,t_0\leqslant t_*\leqslant t\leqslant \vartheta.$ Элементарной программой $\{\eta,[t_*,\vartheta),x_*\}_\Pi$ будем называть множество мер $\eta(dt,du,dv)$, конструируемое следующим образом. Выберем в пространстве всех регулярных борелевских мер $\mu(dt,du)$ — управлений первого игрока (²) — слабый счетный базис $\mu^{(i)},i=1,2,\ldots$ Для базиса $\mu^{(i)}$ построим матрицу $(\eta^{(i)})^{(j)},j=1,2,\ldots$, согласованных с $\mu^{(i)}$ условиями ((²), стр. 521; (*), стр. 990) мер $(\eta^{(i)})^{(j)}$ таких, что последовательности $(\eta^{(i)})^{(j)}$ будут слабо сходиться при $j\to\infty$ при каждом i. Возьмем слабое замыкание каждого из множеств $(\eta^{(i)})^{(j)},i=1,2,\ldots$, при фиксированном j. Выделим из последовательности полученных множеств $\{\eta\}^{(j)},\ j=1,2,\ldots$, всевозможные слабо сходящиеся подпоследовательности $\eta^{(k)} \in \{\eta\}^{(jk)},\ k=1,2,\ldots$ Множество слабых пределов этих подпоследовательностей и составит элементарную программу.

Определим величину $\varepsilon_0(t_*, x_*; t^*)$, $t_0 \le t_* \le t^* \le \vartheta$, равенством

$$\varepsilon_{\mathfrak{d}}(t_{*}, x_{*}; t^{*}) = \max_{\{\eta\}_{\Pi}} \min_{\eta \in \{\eta\}_{\Pi}, p} \rho(x(t^{*}; t_{*}, x_{*}, \eta \in \{\eta\}_{\Pi} + p), 0), \tag{2}$$

величину $\varepsilon_0(t_*, x_*)$ (1) на $[t_*, \vartheta]$ — равенством

$$\varepsilon_0(t_*, x_*) = \min_{\substack{t_* \leqslant t^* \leqslant 0}} \varepsilon_0(t_*, x_*; t'); \tag{3}$$

эдесь $\rho(x,0)$ — эвклидово расстояние от точки x до начала координат x=0, вектор $p\in \mathcal{P}, \, \mathcal{P}=-M$. Оптимальные $t^{0}\in [t_{*},\vartheta], \, \{\eta,[t_{*},t^{*}),x_{*}\}_{\Pi^{0}}, \, \{\eta,[t_{*},t^{0}),x_{*}\}_{\Pi^{0}}$ и $\eta^{0}\in \{\eta\}_{\Pi^{0}}$ из (2),(3) существуют и, вообще говоря, не единственны.

Обозначим символом $S(t,t_*,x(\cdot),\eta)$ фундаментальную матрицу решений для уравнения

$$\delta x\left(t\right) = \delta x\left(t_{*}\right) + \int \int \int \int \frac{\partial f\left(\tau, x\left(\tau\right), u, v\right)}{\partial x} \delta x\left(\tau\right) \eta\left(d\tau, du, dv\right),$$

вычисленную на движении $x(\tau) = x(\tau; t_*, x_*, \eta), t_* \leq \tau \leq t$, где $\partial f/\partial x -$ матрида частных производных $\{\partial f_i/\partial x_j\}$. Символом $T^0(t_*, x_*)$ обозначим множество решений t^0 задачи (3) и символом $L^0(t, x; t^0), t^0 \in T^0(t, x), -$ множество единичных векторов $l^0(t, x; t^0)$ внешних нормалей к сферам $\|x\| \leq \varepsilon_0(t, x; t^0)$ в точках $x^0_{\mathcal{P}}(t^0) \in G_{\mathcal{P}}(t, x, t^0; \{\eta\}_{\Pi^0})$, ближайших к x = 0, причем $G_{\mathcal{P}}(t, x, t^0; \{\eta\}_{\Pi^0}) -$ замкнутая \mathcal{P} — окрестность области достижимости $G(t, x, t^0; \{\eta\}_{\Pi^0})$ $\binom{1}{2}$.

Будем предполагать, что для всякой позиции $\{t_*, x_*\}$, $t_0 \le t_* \le \vartheta$, где $0 < \varepsilon_0(t_*, x_*) < N$ $(N > 0 - \mathrm{const})$, и всякой вектор-функции $v^*(u) \in Q$ найдется такой момент времени $t^0 \in T^0(t_*, x_*)$, для которого выполняются

следующие два условия.

А. Каждая максимизирующая элементарная программа $\{\eta\}_{\pi^0} = \{\eta, [t_*, t^0), x_*\}_{\pi^0}$ содержит единственное решение η^0 задачи (3), и точка $x_M \in M$, ближайшая к соответствующей точке $x^0(t^0) = x(t^0; t_*, x_*, \eta^0)$, единственна.

При условии A на всяком оптимальном программном движении $x^{0}(t) =$

 $=x(t;t_*,x_*,\eta^0)$ выполняется условие минимакса (5).

Б. Найдется вектор $f^* \in F(t_*, x_*; v^*(u))$ такой, что для каждого вектора $l^{\circ}(t_*, x_*; t^{\circ}) S(t^{\circ}, t_*, x^{\circ}(\cdot), \eta^{\circ})$, где $l^{\circ}(t_*, x_*; t^{\circ}) \in L^{\circ}(t_*, x_*; t^{\circ})$, будет справедливо неравенство

$$\begin{split} & l^{0'}(t_*,\ x_*;\ t^0)S\left(t^0,\ t_*,\ x^0\left(\,\cdot\,\right),\ \eta^0\right)f^* \leqslant \\ \leqslant & \min_{u \in P} \max_{v \in \mathcal{Q}} \left(l^{0'}(t_*,\ x_*;\ t^0)S\left(t^0,\ t_*,\ x^0\left(\,\cdot\,\right),\ \eta^0\right)f(t_*,\ x_*,\ u,\ v)\right), \end{split}$$

где $F(t, x; v(u)) = co^* \{f(t, x, u, v): u \in P, v = v(u)\}$ — выпуклая замкнутая оболочка множества $\{f\}$ векторов f, штрих означает транспонирование.

Пемма 1. Пусть выполняются условия А, Б и выбраны некоторая позиция $\{t_*, x_*\}$, для которой $\varepsilon_0(t_*, x_*) \in (0, N)$, $t_* \neq t^\circ$, и произвольная вектор-функция $v^*(u) \in Q$.

Тогда для любого d>0 найдется $\gamma>0$ такое, что можно указать измеримую вектор-функцию $f^*[t] \in F(t,x^*[t];v^*(u))$, обеспечивающую оценку

$$\varepsilon_0(t_*+\Delta, \ x^*[t_*+\Delta]; \ t^0) = \varepsilon_0(t_*, \ x[t_*]; \ t^0) \leqslant \alpha \Delta,$$

как только $\Delta \leq \gamma$; здесь $x^*[t]$, $t_* \leq t \leq \vartheta$, есть решение уравнения в контингенциях (6)

 $dx^*[t] / dt = f^*[t] \in F(t, x^*[t]; v^*(u)). \tag{4}$

Пусть лемма неверна. Тогда найдется число $\alpha^*>0$ такое, что для всякого движения $x^*[t], t \ge t_*$, определяемого уравнением $\dot{x}^*[t] \equiv F(t, x^*[t]; v^*(u)), x^* = x^*[t_*]$, можно указать последовательность $t^{(h)} = (t_* + \Delta^{(h)}) \rightarrow t_*$ при $k \to \infty$ такую, что для $x^{*(h)} = x^*(t^{(h)})$ будет справедливо неравенство

$$\varepsilon_0(t^{(k)}, x^*[t^{(k)}]; t^0) - \varepsilon_0(t_*, x[t_*]; t^0) > \alpha^* \Delta^{(k)}$$
 (5)

при любом k.

Возьмем то решение $x^*[t]$ уравнения (4), которое порождается векторфункцией $f^*[t]$, удовлетворяющей при t=t. условию Б. Каждой позиции $\{t^{(k)},x^{(k)}\}$ отвечает максимальная оптимизирующая программа $\{\eta\}_{\Pi,k}^{00}$ (2). Можно осуществить сужение программ $\{\eta\}_{\Pi,k}^{00}$ и проредить последовательность $\{t^{(k)}\}$ так, чтобы пределы всевозможных слабо сходящихся подпоследовательностей мер $\eta^{(k_f)}$, принадлежащих этим суженным программам $\{\eta\}_{\Pi,k_f}^{00}$, образовали оптимальную элементарную программу $\{\eta\}_{\Pi}^{0}$ для

нозиции $\{t_{\cdot}, x_{\cdot}\}$. По условию А программа $\{\eta\}_{\Pi^0}$ содержит единственное оптимальное управление η^0 . Это управление η^0 порождает опимальное для $\{t_{\cdot}, x_{\cdot}\}$ программное движение $x^0(t) = x(t; t_{\cdot}, x_{\cdot}, \eta^0)$, которое является пределом равномерно сходящейся на $[t^*, t^0], t^* > t_{\cdot} + \Delta^{(h_f)}$, последовательности движений $x(t, t^{(h_f)}, x^*[t^{(h_f)}], \eta^{0(h_f)})$ ($^{t}, ^{t}$), где $\eta^{0(h_f)}$ — оптимальное управление из $\{\eta\}_{\Pi, \mathbf{r}}$. Зафиксируем это движение $x^0(t)$ и последовательность $\{t^{h_f}, x^{h_f}\}$. Введем составные программы $\{\eta\}_{\Pi, k_f}^{(c)}$, состоящие на $\Delta^{(h_f)} = [t_{\cdot}, t^{(h_f)}]$ из управлений $\eta^{(c)}$, удовлетворяющих условию максимума

$$\int_{PQ} l^{0'}[t_*] S(t^0, \tau, x_*^0(\tau), \eta^0) f(\tau, x^0(\tau), u, v) \eta^{(c)}(d\tau, du, dv) =$$

$$= \int_{\Delta^{(k_j)}} \int_{P} \max_{v \in Q} (l^{0'}[t_*] S(t^0, \tau, x^0(\tau), \eta^0) f(\tau, x^0(\tau), u, v)) \mu(d\tau, du), \quad (6)$$

а на $[t^{(h_j)},t^0)$ совпадающие с программами $\{\eta\}_{\Pi,h_j}^{00}=\{\eta,[t^{(h_j)},t^0),$ $\mathbf{z}^*[t^{(h_j)}]\}_{\Pi}^{00}$. Справедливо неравенство

$$\varepsilon_{0}(t^{(h_{j})}, x^{*}[t^{(h_{j})}]; t^{0}) - \varepsilon_{0}(t_{*}, x[t_{*}]; t^{0}) \leq
\leq l_{*}^{'}[t^{(h_{j})}] (x_{(h_{j})}^{(c)}(t^{0}) - x_{(h_{j})}^{(c)}(t^{0}));$$
(7)

здесь $x^{(c)}_{(k_j)}(t^0)$ — одна из ближай пих к x=0 точек области достижимости, порождаемой $\{\eta\}_{\Pi,\ k_j}^{(c)}$ (в эту точку приводит управление $\eta^{(c)}_{(k_j)}$), $x^{(c)}_{(k_j)}(t^0)$ — точка, в которую приводит то же управление $\eta^{(c)}_{(k_j)}$, но из позиции $\{t^{(k_j)}, x^*[t^{(k_j)}]\}$, $l_*[t^{(k_j)}]$ — единичный вектор внешней нормали к сфере $\|x\| \leqslant \rho (x^{(c)}_{(k_j)}(t^0), 0)$ в точке $x^{(c)}_{(k_j)}(t^0)$.

Далее показывается, что при условии Б неравенства (5) и (7) противоречивы. Это противоречие доказывает лемму.

Из леммы 1 с помощью рассуждений, подобных приведенным в (²), вы-

водится следующая

Теорема 1. $\mathit{Иусть}\ \vartheta=\vartheta^{\circ}-\mathit{момент}\ \mathit{программного}\ \mathit{поглощения}\ \mathit{для}\ \mathit{исхо}\mathit{\partial ной}\ \mathit{позиции}\ \{t_0,x_0\},\ \mathit{который}\ \mathit{определяется}\ \mathit{равенством}\ \epsilon_0(t_0,x_0)=\\ =\min_{t>0}\epsilon_0(t_0,x_0;t)=0.$ $\mathit{Иусть}\ \mathit{\partial л}\mathit{n}\ \vartheta=\vartheta^{\circ}\ \mathit{выполняются}\ \mathit{условия}\ A,\ B.$

Тогда экстремальная $(^2, ^3)$ к множеству $W = \{\{t, x\}: \varepsilon_0(t, x) = 0\}$ стратегия $U^*(t, x)$ обеспечивает сближение с множеством M не позже, чем к моменту ϑ^0 , каково бы ни было управление $v \in Q$, τ . е. $U^*(t, x)$ обеспечивает равенство

$$\min_{t_0 \leqslant t \leqslant \theta^0} (\max_{x [t]} [\rho(x[t], M)]) = 0.$$

Условия A, Б выполняются, в частности, в случае единственности для программы $\{\eta\}_{\pi^{00}}$ (²) решения η^{0} и точки $x_{M} \in M$, ближайшей к точке $x^{0}(t^{0})$, хотя бы при одном $t^{0} \in T^{0}(t^{*}, x_{*})$.

В чисто линейном случае x = A(t)x + u - v критерий, подобный Б, рассматривался в (7), в собственно линейном случае x = A(t)x + f(t, u, v) —

в [8].

Естественность условий теоремы 1 выясняется с помощью следущего

контрусловия В, заменяющего условие Б:

В. Для любого вектора u_* найдется вектор $f_* \in F(t_*, x_*; u_*)$ такой, что для каждых $t^0 \in T^0(t_*, x_*)$ и $l^{0'}(t_*, x_*; t^0) S(t^0, t_*, x^0(\cdot), \eta^0)$, где $l^0(t_*, x_*; t^0) \in L^0(t_*, x_*; t^0)$, будет справедливо неравенство

Лемма 2. Пусть выполняется условие В и выбрана некоторая пози-

 $uus \{t_{\cdot}, x_{\cdot}\} \in (0, N), t_{\cdot} \neq t^{0}.$

Тогда для любого $\alpha > 0$ найдется $\gamma > 0$ такое, что для любого вектора $u_* \in P$ можно указать вектор-функцию $f_*[t] \in F(t, x_*[t]; u_*[t])$, обеспечивающую на движении $\dot{x}[t] = f_*[t]$ оценку

$$\varepsilon_0(t_* + \Delta, x_*[t_* + \Delta]; t^0) - \varepsilon_0(t_*, x[t_*]; t^0) \geqslant \alpha \Delta,$$

как только $\Delta \leq \gamma$.

Теорема 2. Пусть выполняется условие В. Тогда при $\varepsilon_0(t_0, x_0) \in (0, N)$ контрстратегия V(t, x, u) (3), экстремальная к множеству $W = \{\{t, x\}: \varepsilon(t, x) \ge \varepsilon_0(t_0, x_0)\}$, обеспечивает уклонение от множества M в течение времени $[t_0, 0^*]$, $0^* \le 0$, каким бы ни было управление $u \in P$, T. e. обеспечивает выполнение неравенства

$$\min_{\substack{l_0 \leqslant t \leqslant \vartheta^* \ x \ [t]}} \left(\min_{\substack{x \ [t]}} \left[\rho \left(x \ [t], \ M \right) \right] \right) \geqslant \varepsilon = \varepsilon_0(t_0, x_0).$$

Если $\min_{u\in P}\max_{v\in Q}s'\cdot f(t,x,u,v)=\max_{v\in Q}\min_{u\in P}s'\cdot f(t,x,u,v)$ при всех $s,\ x$ и t, то в теореме 2 V(t,x,u)=V(t,x).

Институт математики и механики Уральского научного центра Академии наук СССР Свердловск Поступило 28 V 1973

цитированная литература

¹ Н. Н. Красовский, Игровые задачи о встрече движений, «Наука», 1970. ² Н. Н. Красовский, ПММ, 36, в. 6 (1972). ³ Н. Н. Красовский, А. И. Субботин, В. Н. Ушаков, ДАН, 206, № 2 (1972). ⁴ Н. Н. Красовский, ДАН, 203, № 3 (1972). ⁵ А. Ф. Филиппов, Матем. сборн., 51 (93), № 1 (1960). ⁶ В. Д. Батухтин, Н. Н. Красовский, Изв. АН СССР, Техн. кибернетика, № 6 (1972). ⁷ W. Borgest, P. Varaiya, IEEE Transactions on Automatic Control, АС-16, № 5 (1971). ⁸ С. И. Тарлинский, ПММ, 37, в. 1 (1973).