УДК 541.67

ФИЗИЧЕСКАЯ ХИМИЯ

Н. Г. МАКСИМОВ, В. Ф. АНУФРИЕНКО, К. Г. ИОНЕ

ИЗУЧЕНИЕ МЕТОДОМ Э. П. Р. ВЗАИМОДЕЙСТВИЯ ИОНОВ Cu²⁺ С АММИАКОМ В CuY-ПЕОЛИТАХ

(Представлено академиком М. М. Дубининым 19 II 1973)

Представляется интересным детально исследовать состояние катионов переходных металлов в цеолитном каркасе с помощью изучения характера их взаимодействия с молекулами различной координирующей силы.

В данной работе медь вводилась в цеолит Na Y ионным обменом из раствора тетрааммиаката меди (1, 2). Концентрация ее менялась в пределах 0,2—9%, что соответствует степени ионного обмена 2—100%. Адсорбция аммиака производилась при температурах 25, 100, 200, 400° С. Цеолиты

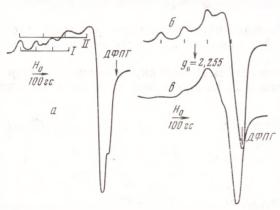
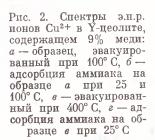
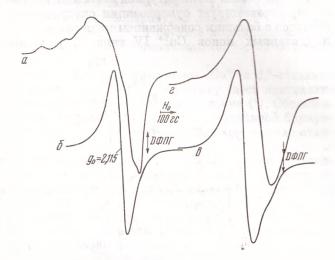


Рис. 1. Спектры э.п.р. ионов Cu^{2+} в Y-цеолите, содержащем 1,5% меди: a — образец, эвакуированный при 100° С, δ — после адсорбции аммиака на образце a — при 25 и 100° С (измерения э.п.р. при 77° К), ϵ — то же, что и δ , но измерения э.п.р. при 300° К

предварительно откачивались при 100 и 400° С в течение 10—12 час. до остаточного давления 10^{-5} тор. Спектры э.п.р. снимались на спектрометре JES-3BQ при 77 и 300° К. Значения g-факторов определялись сравнением с эталоном ДФПГ.


После эвакуирования образдов с малым содержанием меди (<1,5%) наблюдались спектры э.п.р. (3 , 4) (рис. 1, a), соответствующие гидратированному ($g_{\parallel}=2,382,\ g_{\perp}=2,077,\ A=137\cdot 10^{-4}\ {\rm cm^{-1}},\ B \le 16\cdot 10^{-4}\ {\rm cm}$) и дегидратированному ($g_{\parallel}=2,328,\ g_{\perp}=2,06,\ A=171\cdot 10^{-4}\ {\rm cm^{-1}},\ B=26\cdot 10^{-4}\ {\rm cm^{-1}}$) состояниям иона ${\rm Cu^{2+}}-$ ноны I и II типа (4 , 2). Для образдов с большим содержанием меди (>1,5%) после дегидратации, кроме изолированных ионов I и II типа, наблюдаются (рис. 2, a) спектры э.п.р. ионов в магнитных ассоциатах (рис. 2, a), которые также были найдены для меди в X- и A-цеолитах (5), а позднее (6) и в цеолитах типа Y.


После семикратной обработки Си-цеолитов раствором NH_4Cl (для проведения обратного ионного обмена) в образцах остается $0.2 \div 0.4\%$ меди. Сигналы э.п.р. этой меди по интенсивности соответствуют указанным количествам, а по характеру — изолированным понам I типа, что свидетельствует о полноте связывания меди в цеолитах в ионном виде.

После адсорбции аммиака можно выделить четыре типа сигналов (рис. 1—3). Первый с $g_{\parallel}=2,255,\,g_{\perp}=2,040$ и A=176 гс ($I_{\rm A}$), близкий по параметрам к аммиачному комплексу в Y-цеолитах (7), второй с параметрами $g_{\parallel}=2,23,\,g_{\perp}=2,043,\,A=185$ гс ($II_{\rm A}$), третий с $g_{\parallel}=2,27,\,g_{\perp}=2,05,$

 $A=170~{
m rc}$ (III_A). Для четвертого (IV_A) параметры э.п.р. ($g_{\parallel}=2{,}00$), $g_{\perp}=2{,}20$, $A=133~{
m rc}$ и $B\simeq 40~{
m rc}$) существенно отличаются от параметров тетрагональных комплексов меди.

После дегидратации при 100° С адсорбция аммиака при 25° и равновесном давлении 450 тор на образцах с малым содержанием меди (≤1,5%)

приводит к появлению в спектрах э.п.р. при 77° К сигналов I_A (рис. 1, 6), полученных также в работе (7). Повышение температуры измерений приводит к плавному возрастанию g_{\perp} , смазыванию с.т.с. вблизи g_{\parallel} . Для компонент с.т.с. вблизи g_{\parallel} при этом проявляется зависимость ΔH от $m_{\rm I}$ и наблюдается

Cu²-H

Ho

100 ec

100 ec

Рис. 3. Спектр э.п.р. ионов Cu²⁺ в Y-цеолите (9% меди) после выдержки в присутствии аммиака при 200° С. Отмечен обращенный спектр

симметричная фоновая линия с $g_0 = 2,11$, и ее появление более заметно при 300° K (рис. $1, \theta$).

Адсорбция аммиака на образцах с большим содержанием меди ($\simeq 5\%$) сопровождается появлением симметричной $\Delta H = 144$ гс и $g_0 = 2.11$ при 300° K, ширина которой возрастает с понижением температуры измерений, и спектр принимает асимметричный вид при 77° К. С дальнейшим ростом содержания меди ширина синглетного сигнала уменьшается, и для 9% меди при 300° С $\Delta H = 90$ гс, а при 77° K $\Delta H = 110$ гс (рис. 2,6). Если после адсорбции аммиака при 25° С образцы эвакуировались до давления $1 \cdot 10^{-3}$, происхо-

дило увеличение ширины линии симметричного сигнала с $g_0=2,11$ для образцов с большой концентрацией меди ($\Delta H=160$ гс для $9\,\%$), на фоне которого проявляются уширенные спектры э.п.р. ионов Cu^{2+} с $g_{\parallel}\approx 2,25$ (II_{A}). Для малых концентраций меди сильных температурных изменений в спектрах э.п.р. не наблюдается. Для образцов с большой концентрацией

меди, эвакуировавшихся при 100° после адсорбции аммиака (25° C), в основном наблюдается спектр э.п.р. с $g_{\parallel}=2{,}00$ и $g_{\perp}=2{,}20$ (7). Для малых концентраций спектр обусловлен, как правило, ионами Cu²+ II_A и III_A.

После дегидратации при 400° С адсорбция аммиака при 25° и давлении 450 тор на образцах с малым содержанием меди приводит к тому, что наблюдается слабая температурная зависимость спектров э.п.р. и в основном спектр соответствует суперпозиции спектров ионов типов II_A, III_A. Для образцов с большим содержанием меди ранее наблюдавшиеся линии обменно-связанных ионов Cu²⁺ IV типа (1, 2) уширяются после адсорбции

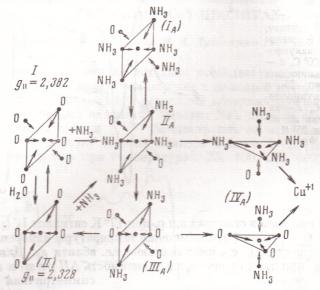


Рис. 4. Схема изменений состояния иона Cu²⁺ (симметрия и характер окружения) при взаимодействии с аммиаком при разных температурах

(рис. $2, \varepsilon$) и на фоне уширенной симметричной линии наблюдаются ионы с g = 2.25 - 2.26. Эвакуирование этих образцов при 25 или 100° С до давле-

ния 10^{-3} тор существенно не меняет спектров э.п.р.

Взаимодействие аммиака при высоких температурах (более 150° C) приводит к значительному (в десятки раз) уменьшению интенсивности спектров э.п.р., особенно для больших содержаний меди (>1,5%). Нагревание образцов при 200° после адсорбции аммиака при 25° приводит к появлению спектров IV_A (рис. 3).

Спектры э.п.р. аммиакатов меди хорошо изучены (8). Известно (9), что устойчивость $Cu(NH_3)_n^{2+}$ в воде резко падает с ростом n до 4. С учетом данных работ (8 , 9) можно предложить следующую схему превращений комплекса меди (рис. 4), где спектр I_A приписан $Cu(NH_3)_5^{2+}$. Стабилизация $Cu(NH_3)_6$ менее вероятна, поскольку последний мало устойчив (9).

Появление симметричного сигнала для образцов с большим содержанием меди можно объяснить увеличением спинового обмена за счет делокализации спиновой плотности в водно-аммиачной среде. Значение $g_0 = 2,11$ указывает, что координация близка координации меди в образцах при малых ее концентрациях. Удаление аммиака, сопровождаемое ростом интенсивности ионов II_A при малых концентрациях меди и уменьшением обменных взаимодействий для больших концентраций, смещает равновесие $Cu(NH_3)_{n-1}^{2+} = Cu(NH_3)_n^{2+}$ влево при $n \le 4$. Повышение температуры эвакуирования аммиака до 100° С приводит к появлению $Cu(NH_3)_2^{2+}$ (III_A), которые с последующим ростом температуры дают обращенный сигнал (IV_A) или переходят в ионы II типа. Появление ионов IV_A связано с даль-

нейшими перестройками в координационной сфере иона Cu^{2+} с образованием комплекса с d_z^2 -основной орбитой, за счет образования прочной связи с аммиаком. Появление спектров ионов II_A и III_A для образцов, дегидратированных при 400° С с последующей адсорбцией аммиака при 25° определяется более сильным связыванием дегидратированных ионов Cu^{2+} с решеткой цеолита (²). Наблюдающееся падение интенсивности сигналов после нагревания образцов с аммиаком при температурах более 150° С связано, по-видимому, с восстановлением ионов Cu^{2+} . При этом восстановление, вероятно, осуществляется через образование комплексов Cu^{2+} с d_z^2 -основной орбитой.

Наиболее вероятным местом локализации ионов Cu^{2+} с d_z^2 -основной орбитой в каркасе цеолита является место S_{II} , поскольку здесь кристаллическое поле иона Cu^{2+} должно иметь тригональное искажение (4). Обращенный спектр * возможен также для ионов Cu^{2+} в поле тригональной бипирамиды, подобно данным работы (10), но значение A_{II} в нашем случае отли-

чается от найденного (10).

Таким образом, если обнаруженные ранее (1, 2) при гидратации — дегидратации переходы связаны с аксиальными возмущениями в координационной сфере меди в цеолитах, то изменение ее параметров при адсорбции аммиака соответствует смене лигандов и осей симметрии. При этом состояние меди теперь уже определяется в основном характером ее взаимодействия с аммиаком, который, за счет большей основности по сравнению с H_2OOH^- и ионов кислорода решетки, входит в экваториальную плоскость комплекса (рис. 4), а кислород цеолитного каркаса создает лишь аксиальное возмущение. В такой структуре орбита неспаренного электрона меди должна быть направлена на неподеленные пары электронов аммиака.

Институт катализа Сибирского отделения Академии наук СССР Новосибирск Поступило 7 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. К. Боресков, Н. Н. Бобровидр., ДАН. 201, 887 (1971). ² Н. Г. Максимов, В. Ф. Ануфриенко и др., ЖСХ. 13, 1020 (1972). ³ U. Kruerke, Р. Jung, Zs. Phys. Chem. Frankfurt, 58, 53 (1968). ⁴ И. Д. Михейкин, Автореф. кандидатской диссертации, 1971. ⁵ В. А. Сильченко. Н. Н. Пафомов и др., В сборн. Строение молекул и квантовая химия, Киев. 1970. ⁶ J. Turkevich, J. Catalysis, 25, 44 (1972). ⁷ C. Nacchache, Y. B. Taarit, Chem. Phys. Let., 11, 11 (1971). ⁸ В. J. Hathaway, А. А. Tomlinson, Coord. Chem. Rev., 5, 1 (1970). ⁹ J. В jerum, Metall Ammine Formation in Aqueous Solution, Haase, Copengagen, 1957. ¹⁰ Г. А. Сенькова, И. Д. Михейкин, К. И. Замараев, ЖСХ, 11, 23 (1970). ¹¹ Р. Gallezot, Y. В. Таагit, В. Імеlik, С. R., 272, 261 (1971). ¹² А. А. Шкляев, В. Ф. Ануфриенко и др., ДАН, 207, 135 (1972).

6 ДАН, т. 212, № 1

^{*} В связи со сказанным, результаты рентгеноструктурного изучения мест ло-кализации ионов Cu^{2+} в Cu-Y-цеолитах (11) нам представляются ошибочными, поскольку найденные расстояния Cu-N 3,02 A в случае аммиачного комплекса и 2,2 A для пиридината, согласно с данными (12), не соответствуют образованию какой-либо связи $Cu^{2+}-N$. Вероятно, авторы (11) имели дело с ионами Cu^{+} в Cu-Y-цеолите, образующимися в результате восстановления ионов Cu^{2+} .