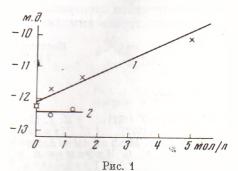
УДК 541.64÷543.422.23

ФИЗИЧЕСКАЯ ХИМИЯ

И. С. МОРОЗОВА, Л. А. ХАРИТОНОВА, Б. Л. РЫТОВ, М. А. МАРКЕВИЧ, Г. В. РАКОВА, член-корреспондент АН СССР Н. С. ЕНИКОЛОПЯН


О ВЗАИМОДЕЙСТВИИ ЭФИРАТА ТРЕХФТОРИСТОГО БОРА с диоксоланом

Образованию активных центров при полимеризации циклических эфиров и ацеталей на кислотах Льюиса предшествует образование комплекса -катализатора с мономером. При полимеризации диоксолана (ДО) на эфирате трехфтористого бора трехфтористый бор равновесно распределен между донорами электронов в данной системе (эфир, ДО, полимер) в соответствии с их основностью и концентрацией.

$$\Pi + BF_3 \cdot Et_2O \stackrel{\sim}{\sim} BF_3 \cdot \Pi + Et_2O,$$
(I)

где Д — донорное соединение.

Кинетические кривые полимеризации ДО на BF₃·Et₂O имеют S-образный характер (1, 2). Как было показано (2), добавки полимера и его мо-

Зависимость величины химического сдвига F19 в системе BF3Et2O - ацеталь от концентрации ацеталя: $[BF_3Et_2O] =$ = 0,1 мол/л, 1 - метилалаль, 2 - диоксолан (С6 F6 - внешний стандарт, растворитель - хлористый метилен, 28° C)

дельного соединения - метилаля значительно снижают величину индукционного периода. Это может быть связано с отличием констант инициирования при образовании активных центров из соответствующих комплексов, концентрация которых определяется равновесием (I). Поэтому представлялось интересным определить константы равновесия (I) для ДО и метилаля.

Измерения констант равновесия проводили методом я.м.р. на ядрах Н¹ (спектрометр JNM-3H-60, рабочая частота 60 Мгц) при концентрациях ${\rm BF_3 \cdot Et_2O}$ 0,1-0,2 и Д 0,5-1,5 мол/л в растворе хлористого метилена; концентрацию комплексов определяли по

изменению химических сдвигов групп СН₃- и СН₂-связанного и свободно-

го эфира (³).

Были получены следующие значения констант (при 20°C): 4,3·10⁻², 10,6 · 10-2 и 25 для ДО, метилаля и ТГФ соответственно. Величина константы равновесия для ТГФ хорошо согласуется с приведенной в работе (4).

Спектры я.м.р. этих же систем были исследованы также на ядрах F^{19} (спектрометр «Tesla», рабочая частота 80 Мгц). Во всех случаях в спектрах проявляется только один сигнал, что связано с быстрым обменом ВГз между донорами. Как видно из рис. 1, химический сдвиг F¹⁹ практически не зависит от концентрации ДО и близок к величине химического сдвига BF₃·Et₂O, но линейно зависит от концентрации метилаля. В случае метилаля наряду с равновесием (I) существует, по-видимому, и другая реакция, в результате которой появляется новый тип химически связанного фтора

$$CH_3OCH_2OCH_3 \cdot BF_3 \stackrel{\sim}{\rightleftharpoons} BF_3OCH_3^- + {}^+CH_2OCH_3,$$
 (II)

что приводит к смещению сигнала в сильное поле (химический сдвиг $\mathrm{BF_3OCH_3^-}$ равен 10,2 м.д., $\mathrm{C_6F_6}$ — внешний стандарт). В случае же ДО кроме равновесного перекомплексования, вероятно, нет других реакций или скорость их незначительна.

Из значения полученных констант равновеспя (I) следует, что при полимеризации ДО в блоке при концентрациях $BF_3 \cdot Et_2O$ порядка 10^{-2} мол/л в начальный момент времени практически весь BF_3 находится в комплек-

се с ДО (~95%).

Представляло интерес получить комплекс ДО·ВF₃ в отсутствие других доноров и исследовать его превращения. Был осуществлен синтез этого

комплекса: раствор ДО в хлористом метилене (1 мол/л) насыщали эквимолекулярным количеством тазообразного BF₃ иап Идентификацию этого комплекса проводили методом я.м.р. на ядрах H¹: сигналы при 4,298 и 5,228 относятся к протонам — СН₂СН₂- и — CH₂-групп ДО, связанного в комплекс. Спектр я.м.р. не изменя-В интервале температур $-78 \div +20^{\circ}$ (рис. 2a). Добавки к раствору комплекса ВГ₃ · ДО дополнительных количеств ДО или ТГФ приводят к установлению равновесий аналогичных смещению сигналов я.м.р. групп протонов ДО и $T\Gamma\Phi$ (рис $26, \theta$). Вычисленные значения химичесдвигов соответствующих групп хорошо совпадают с наблюдаемыми. Расчет был проведен для комплекса ВГ₃.ДО состава 1:1.

При хранении комплекса BF₃ · ДО при 0° из раствора хлористого метилена выпадают белые игольчатые кристаллы, растворимые только в сильнополярных растворителях таких, как нитрометан, суль-

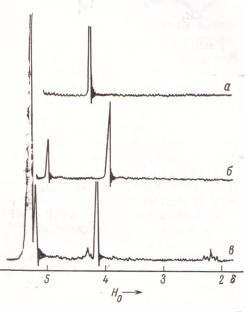


Рис. 2. Спектры я.м.р. комплекса $ДO \cdot BF_3$, $[ДO \cdot BF_3] = 1$ мол/л (а); системы $ДO \cdot BF_3 + DO$, $[DO \cdot BF_3] = 0.5$ мол/л, [DO] = 1 мол/л (6); системы $DO \cdot BF_3 + TPO$, $[DO \cdot BF_3] = 0.5$ мол/л, [TPO] = 0.1 мол/л; (растворитель – хлористый метилен, 20° C) (e)

фолан, что может указывать на ионную структуру этих кристаллов. В работе (5) кристаллам была приписана структура комплекса $\text{ДО} \cdot \text{BF}_3$. Данные элементного анализа полученных нами кристаллов приведены ниже и соответствуют составу $3\text{BF}_3 \cdot 2\text{ДО}$. В маточном растворе этих кристаллов наблюдается повышенное содержание ДО по отношению к BF_3 .

Найдено %: С 20,7; Н 3,2; В 8,8; F 48,8 ДО·ВГ₃. Вычислено %: С 25,4; Н 4,3; В 7,6; F 40,3

ОСНОСН₂СН₂ВF₄⁻. Вычислено %: С 22,7; Н 3,2; В 6,8; F 47,5 2ДО·3ВF₃. Вычислено %: С 20,5; Н 3,4; В 9,2; F 48,5

Спектр я.м.р. на ядрах H^1 раствора кристаллов в нитрометане соответствует спектру катиона диоксолениевого иона CH_2-O квинтет CH_2-O

при 9,40 δ (—СН $^+$ —) и дублет при 5,50 δ (—СН $_2$ СН $_2$ —), $J_{{\rm HC}^+-{\rm O-CH}_2}=1$ гц, и совпадает с данными (6). Других сигналов в спектре не обнаружили. Спектр я.м.р. на ядрах ${\rm F}^{19}$ содержит два сигнала при -13,1 и -11,8 м.д.

 $(C_6F_6$ — внешний стандарт) с отношением интенсивностей 1:8, т. е. в системе на 8 эквивалентных атомов фтора приходится один неэквивалентный.

Совокупность полученных данных: появление свободного ДО в маточном растворе кристаллов, элементарный анализ, спектров я.м.р. на ядрах ${\rm H^1}$ и ${\rm F^{19}},-$ позволяет предложить возможную схему образования кристаллов:

Раскрытие диоксолениевого иона приводит к образованию формиатной группы H-COO-, имеющей характерное поглощение в области 8,18 в спектре я.м.р. на ядрах H^4 . Образование формиатной группы происходит только при инициировании полимеризации ДО на диоксолениевом ионе и не наблюдается при инициировании полимеризации на $BF_3 \cdot OEt_2$, $BF_3 \cdot T\Gamma\Phi$ и комплекса $JO \cdot BF_3$. Кинетика полимеризации ДО в присутствии кристаллов, содержащих диоксолениевый ион, так же как и в присутствии комплексов BF_3 , характеризуется индукционным периодом.

Кроме того, появление формиатной группы наблюдается практически сразу же после введения в полимеризационную систему кристаллов, содержащих диоксолениевый ион, и ее конентрация не меняется по ходу пропесса полимеризации.

На основании этих результатов считаем, что реакция инициирования полимеризации ДО комплексами BF_3 не связана с образованием диоксолениевого иона.

Возможным путем инициирования (в отсутствие полимера) является либо мономолекулярное, либо бимолекулярное раскрытие комплекса $\mathrm{ДO}\cdot\mathrm{BF}_3$.

Авторы выражают благодарность Э. З. Утянской за помощь при проведении синтеза комплекса ДО·ВГ₃.

Институт химической физики Академии наук СССР Москва Поступило 26 III 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. А. Харитонова, Г. В. Ракова и др., Высокомолек. соед., **А**9. № 12, 2586 (1967). ² А. А. Кузнецов, В. И. Иржак и др., ДАН, **192**. № 6, **1281** (1970). ³ R. A. Craig, R. E. Richards, Trans. Farad. Soc., **59**, 1962 (1963). ⁴ M. Okada, K. Suyama, Y. Yamashita, Tetrahedron Letters, **28**, 2329 (1965). ⁵ J. Juja, O. Masahiko, S. Katsuhiko, Makromol. Chim., **111**, 277 (1968). ⁶ P. Kubisa, St. Penczek, Makromol. Chim., **144**, 196 (1971).