УДК 519.21

MATEMATUKA

С. И. ПИСАНЕЦ

О МЕРАХ, СООТВЕТСТВУЮЩИХ ДИФФУЗИОННЫМ ПРОЦЕССАМ

(Представлено академиком В. М. Глушковым 7 II 1973)

Пусть $\xi_n(t)$, $n=1,2,\ldots,$ — последовательность диффузионных процессов, удовлетворяющих стохастическим дифференциальным уравнениям

$$d\xi_n(t) = a_n(t, \xi_n(t)) dt + dw(t), \quad \xi_n(0) = \xi_{n, 0}, \quad n = 1, 2, \dots,$$

$$t \in [0, T], \tag{1}$$

и пусть выполнено

У с ловие 1. Найдутся положительные постоянные C и K такие, что

$$M \mid \xi_{n, 0} \mid \nu \leq C, \quad |a_n(t, x)| \leq K(1 + |x|), \quad n = 1, 2, ...,$$

 $x \in (-\infty, \infty), \quad t \in [0, T].$

В заметке приводятся результаты, касающиеся слабой компактности и слабой сходимости мер μ_n , соответствующих процессам $\xi_n(t)$, $n=1,2,\ldots$

Теорема 1. Пусть выполнено условие (1). Тогда из последовательности марковских процессов $\xi_n(t)$ можно выделить подпоследовательность $\xi_{nk}(t)$, слабо сходящуюся к непрерывному марковскому процессу $\xi_0(t)$.

При доказательстве теоремы 1 важную роль играет

Лемма 1. Пусть $a_n(x)$, $n=1,2,\ldots$,— последовательность функций, удовлетворяющих условию 1, и пусть f(x) произвольная непрерывная ограниченная функция в R^1 .

Тогда семейство функций $\{M_x f(\xi_n(t)), n=1,\ldots\}$ равностепенно непрерывно по совокупности переменных на каждом компакте $[-N,N] \times [0,T],$

V > 0.

Лемма 1 позволяет из последовательности $\xi_n(t)$ выделить подпоследовательность $\xi_{nk}(t)$ такую, что переходные вероятности процессов $\xi_{nk}(t)$ как вероятностные меры слабо сходятся к некоторым предельным мерам, существование которых устанавливается с помощью теоремы Рисса о представлении линейного функционала в C_0 (5). Затем проверяется, что предельное семейство мер образует марковский процесс $\xi_0(t)$. При этом, как и при доказательстве леммы 1, используются оценки для математических ожиданий от плотностей мер, полученные в (4). Наконец, слабая сходимость мер μ_{nk} к μ_0 выводится из леммы 1, условия 1 и одной общей предельной теоремы теории вероятностей (2, 3).

Теорема 2. Пусть выполнено условие (1) и пусть последовательность процессов $\xi_n(t)$ слабо сходится к непрерывному марковскому про-

 $ueccy \xi_0(t)$.

 $\overline{w(t)}$ такие, что предельный процесс $\xi_0(t)$ удовлетворяет стохастическому дифференциальному уравнению

$$d\xi_0(t) = a_0(t, \xi_0(t)) dt + d\overline{w(t)}, \quad \xi_0(0) = \xi_{0,0}, \quad t \in [0, T].$$

Доказательство теоремы 2 опирается на одну теорему о слабой сходимости мер (3), теорему Гирсанова (4 , 6) и результаты по абсолютной непрерывности и эквивалентности мер, отвечающих непрерывным процессам, относительно винеровской (6). Сначала показывается, что мера μ_0 эк-

вивалентна винеровской, затем устанавливается, что процесс $\xi_0(t)$ является процессом диффузионного типа, и, наконец, доказывается сущест-

вование функции $a_0(t,x)$, удовлетворяющей условиям теоремы.

Теорема 3. Пусть $\xi_n(t)$, $n=1,2,\ldots,-$ последовательность процессов, удовлетворяющих уравнениям (1), и пусть выполнены условия (1) и (2): процесс $\xi_0(t)$ с отвечающей мерой μ_0 , абсолютно непрерывной относительно винеровской, является единственным непрерывным решением уравнения

$$d\xi_0(t) = a_0(t, \xi_0(t)) dt + dw(t), \quad \xi_0(0) = \xi_{0,0}, \quad t \in [0, T].$$
 (2)

Тогда, для того чтобы последовательность процессов $\xi_n(t)$ слабо сходилась κ процессу $\xi_0(t)$, необходимо и достаточно выполнения условий

$$\lim_{n \to \infty} M \int_{0}^{t} f(\xi_{n}(s)) g(\xi_{n}(u)) a_{n}(u, \xi_{n}(u)) du =$$

$$= M \int_{0}^{t} f(\xi_{0}(s)) g(\xi_{0}(u)) a_{0}(u, \xi_{0}(u)) du,$$

$$\lim_{n \to \infty} M \int_{0}^{t} g(\xi_{n}(u)) du = M \int_{0}^{t} g(\xi_{0}(u)) du,$$

$$\xi_{n, 0} \Rightarrow \xi_{0, 0},$$

какими бы ни были ограниченные непрерывные функции f(x) и g(x), $s, t \in [0, T], s < t$.

Теорема 4. Пусть процессы $\xi_n(t)$, $n=0,1,2,\ldots$, являются решениями уравнений (1), (2) с коэффициентами сноса, не зависящими от пе-

ременной t, u пусть выполнены условия (1), (2) теоремы 3.

Тогда слабая сходимость последовательности коэффициентов сноса $a_n(x)$ κ $a_0(x)$ на каждом компакте $[-N,N] \subset (-\infty,\infty)$, N>0, является условием, необходимым u достаточным для того, чтобы последовательность про-

 $ueccob \, \xi_n(t)$ слабо сходилась к процессу $\xi_0(t)$.

При выводе утверждений теорем 3 и 4 существенно используются теорема 1 и одна предельная теорема в (7) о возможности построения на некотором вероятностном пространстве последовательности процессов $\bar{\xi}_n(t)$ такой, что меры μ_n совпадают с мерами $\tilde{\mu}_n$, $n=0,1,2,\ldots$, и при каждом t из [0,T] $\tilde{\xi}_n(t) \rightarrow \tilde{\xi}_0(t)$ по вероятности.

Автор искрение благодарен В. И. Иваненко и А. В. Скороходу за поста-

новку задачи и помощь в работе.

Институт кибернетики Академии наук УССР Киев Поступило 25 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. В. Гирсанов, Теория вероятностей и ее применение, 5, 3, 314 (1960).
² И. И. Гихман, А. В. Скороход, Введение в теорию случайных процессов, «Наука», 1965.
³ И. И. Гихман, А. В. Скороход, Теория случайных процессов, «Наука», 1970.
⁴ И. И. Гихман, А. В. Скороход, Стохастические дифференциальные уравнения, Киев, 1968.
⁵ Е. Б. Дынкин, Марковские процессы, М., 1963.
⁶ Р. Ш. Липцер, А. Н. Ширяев, Изв. АН СССР, сер. матем., 36, 4, 847 (1972).
⁷ А. В. Скороход, Исследования по теории случайных процессов, Киев, 1961.