УДК 577.15.02

БИОХИМИЯ

Л. М. РАЙХМАН, Э. П. БУЖИНСКИЙ, Ю. Ш. МОШКОВСКИЙ

ПРИМЕНЕНИЕ ПАРАМАГНИТНЫХ ЗОНДОВ ДЛЯ ВЫЯВЛЕНИЯ КОНФОРМАЦИОННЫХ ИЗМЕНЕНИЙ В Na+, K+-ЗАВИСИМОЙ АТФазе

(Представлено академиком Н. М. Эмануэлем 14 V 1973)

В настоящее время считается установленным, что реакция гидролиза $AT\Phi$ мембранной $AT\Phi$ азой, активируемой ионами Na^+ и K^+ (Na^+ , K^+ - $AT\Phi$ аза), включает две основных стадии: образование фосфорилированной формы фермента при участии ионов Na^+ и ее последующее дефосфорилирование, катализируемое ионами K^+ (1 , 2). Предполагается, что Na^+ -зависимое фосфорилирование и K^+ -зависимое дефосфорилирование сопровождается изменением конформации мембранных структур, содержащих фермент, которое и лежит в основе активного перемещения ионов

через мембрану (³, ⁴).

В последние годы появились сообщения о возможности наблюдения конформационных изменений в препаратах Na⁺, K⁺-АТФазы с помощью кругового дихроизма и люминесцентных меток (⁵⁻⁷). Однако результаты, полученные этими методами, были недостаточно четкими и в ряде случаев оспаривались другими авторами (⁸). В данной работе для выявления конформационных переходов в препаратах Na⁺, K⁺-АТФазы мы применили метод гидрофобных парамагнитных (спиновых) зондов, связывающихся с неполярными участками мембран, преимущественно с их фосфолипидными компонентами (⁹, ¹⁰). Спектры электронного парамагнитного резонанса (э.п.р.), содержащиеся в зонде иминоксильных групп, зависят от характера их молекулярного окружения, что позволяет обнаружить структурные изменения матрицы, с которой связан зонд.

Выделение препарата Na⁺, K⁺-АТФазы (из почек морской свинки) и определение его активности проводили по методу Поста (¹¹). Na⁺, K⁺-АТФазная активность составляла 60—65 ед. (1 ед. = 1 ммол/мг·час) при специфичности (отношение Na⁺, K⁺-АТФазной к общей АТФазной активности) 80—85%. Парамагнитные зонды (п.з.) вводили в среду, содержащую препарат Na⁺, K⁺-АТФазы, в виде малых количеств этанольного раствора с таким расчетом, чтобы конечная концентрация п.з. в среде составляла 10⁻⁴ М при содержании белка 10 мг/мл. После нескольких минут инкубации препарата Na⁺, K⁺-АТФазы с п.з. записывали спектры э.п.р. в «исходном состоянии» (т. е. в отсутствие АТФ и понов Na⁺ и K⁺) и затем при последовательном добавлении АТФ + NaCl, т. е. в условиях образования фосфорилированного интермедиата, и KCl, катализирующего его дефосфорилирование. П.з. в концентрации 10⁻⁴ М не влияли на Na⁺, K⁺-АТФазную активность.

Из нескольких испытанных зондов, содержащих одну (монорадикал) или две (бирадикал) иминоксильных группы, наибольшие изменения спектров э.п.р. под влиянием АТФ и ионов Na⁺ и K⁺ наблюдались в случае применения бирадикального парамагнитного зонда:

обозначаемого в дальнейшем как БПЗ-1. Параметром, характеризующим микровязкость среды, в которой находится бирадикал, является так называемая частота обмена v, определяемая из соотношения интенсивностей основных и промежуточных линий спектра (рис. 1), возникающих в результате электронного обмена между двумя иминоксильными группами

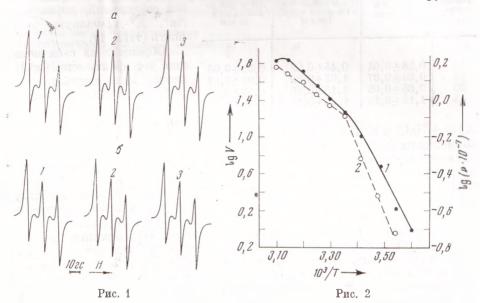


Рис. 1. Спектры э.п.р. БПЗ-1 в препарате Na+, K+-АТФазы. a — интактный препарат; b — препарат, обработанный оуабаином $10^{-4}~M$. l — исходное состояние, b — после добавления 2 мd АТФ и 150 мd NaCl, d — после добавления 20 мd KCl. Спектры сняты при температуре 22°

Рис. 2. Зависимость Na+, K+-АТФазной активности (V) и частоты обмена БПЗ-1 (v) в препарате Na+, K+-АТФазы от температуры в координатах Аррениуса. I-Na+, K+-АТФазная активность, 2- частота обмена БПЗ-1

 $(^{12})$. Чем выше интенсивность промежуточных липий относительно основных, тем больше частота обмена ν и тем меньше микровязкость среды, в которой содержится бирадикал.

При добавлении ATФ и NaCl, т. е. в условиях образования фосфорилированного интермедиата Na⁺, K⁺-ATФазы, наблюдается явно выражен-

ное возрастание интенсивности промежуточных линий относительно основных (рис. 1a), соответствующее увеличению параметра v на 70%. Последующее добавление КС1 частично обращает эти изменения.

Отсюда следует, что образование фосфорилированного интермедиата Na+, K+-ATФазы сопровождается определенными конформационными перестройками неполярных участков мембран, содержащих БПЗ-1, при которых Влияние CaCl₂, парахлормеркурибензоата (ПХМБ) и олигомицина на Na⁺, K⁺-АТФазную активность и величину индуцируемого АТФ — NaCl и КСl паменения параметра v БПЗ-1

Hills Williams	Ингибирование, %			
Реагент		увеличение у, индуцирован- ное АТФ (2мМ) и NaCl (150 мМ)		
Distriction of the second				
CaCl ₂ , 1 MM	68	71	73	
ПХМБ,	97	79	98	
$5 \cdot 10^{-4} M$				
Олигоми-	36	7	32	
цин, 20 μг на				
1 мг белка				

их микровязкость уменьшается. Эти конформационные изменения специфичны для Na⁺, K⁺-АТФазной активности, так как оуабаин, специфический ингибитор Na⁺, K⁺-АТФазы, блокирует влияние АТФ и ионов Na⁺ и K⁺

Влияние $AT\Phi + NaCl$ и KCl на частоту обмена ν БПЗ-1 в препаратах Na^+ , K^+ - $AT\Phi$ азы при разных температурах (ν - 10^7 сек $^{-1}$)

Temne- pary- pa, °C	Исходное состояние	После добавления АТФ 2 мМ и NaCl 150 мМ	После добав- ления КСІ 20 мМ
15 22 30 38			$\begin{array}{c} 0,33\pm0,05\\ 0,80\pm0,07\\ 0,93\pm0,09\\ 1,20\pm0,12 \end{array}$

на частоту обмена БПЗ-1 (рис. 16). Конформационные переходы, индуцируемые АТФ и ионами Na⁺ и K⁺, ингибируются также рядом других соединений, тормозящих Na⁺, K⁺-АТФазную активность (табл. 1).

Обращает на себя внимание тот факт, что CaCl₂ в равной мере ингибирует как Na⁺, K⁺-ATФазную активность, так и конформационные переходы, индуцируемые

 $AT\Phi + NaCl$ и KCl. В то же время в случае ПХМБ и олигомицина степень торможения Na^+ , K^+ - $AT\Phi$ азной активности соответствует степени ингибирования конформационных изменений, индуцируемых KCl, тогда как влияние $AT\Phi + NaCl$ на конформацию ингибируется в меньшей мере. Отсюда следует, что участки активного центра Na^+ , K^+ - $AT\Phi$ азы, взаимодействующие с иопами Na^+ и K^+ , отличаются разной чувствительностью к ряду соединений и, возможно, пространственно отделены друг от друга.

Рассматривая влияние различных агентов на конформационные переходы в неполярных участках мембран $\mathrm{Na^+}$, $\mathrm{K^+}$ - $\mathrm{AT\Phi}$ азных препаратов, надо иметь в виду, что оказываемый ими эффект может быть связан не только с действием на активный центр фермента, но и с непосредственным влиянием на структурные компоненты мембран. Например, в основе ингибирующего действия $\mathrm{CaCl_2}$ может лежать его способность эффективно связываться с мембранными фосфолипидами, уменьшая при этом их конформационную подвижность. Данный вопрос требует дальнейших исследований.

На рис. 2 представлена температурная зависимость Na^+ , K^+ -А $T\Phi$ азной активности и величины v БПЗ-1 в координатах Аррениуса. При 25° наблюдается хорошо выраженный излом аррениусовской зависимости параметра v. Такой эффект может быть обусловлен фазовым переходом в неполярных областях мембран типа «плавления» их жидко-кристаллических структур (13 , 14). Примерно в этом же температурном интервале наблюдается изгиб аррениусовской зависимости для Na^+ , K^+ -А $T\Phi$ азной активности.

Представляет интерес также и тот факт, что относительные изменения параметра ν под влиянием $AT\Phi + NaCl$ и KCl существенно зависят от температуры (табл. 2). Наиболее резкий эффект наблюдается при 20-22°. При 30° влияние ATФ и ионов Na⁺ и \hat{K}^{+} уже проявляется слабее, а при 38° — статистически недостоверно. При 15° изменения ν также менее выражены, чем при 22°. Обсуждая эти данные, нужно учитывать, что количество молекул зонда, статистически распределенных в неполярных участках Na+, K+-АТФазного препарата, значительно превышает количество содержащихся в этом препарате активных центров Na+, K+-ATФaзы. Тот факт, что при изменении состояния последних (фосфорилирование или дефосфорилирование) удается все же наблюдать изменение спектров э.п.р. зондов, связан, по-видимому, с кооперативными свойствами мембран (13, 14), в силу которых изменение конформации небольших участков мембраны (в области активного центра Na+, K+-ATФазы) может индуцировать структурные перестройки в относительно больших участках («доменах»), прилегающих к активному центру. Величина такого домена, чувствительного к перестройкам в активном центре, должна уменьшаться с увеличением температуры, особенно резко снижаясь при переходе через точку, соответствующую «плавлению» жидко-кристаллической структуры мембранных фосфолипидов. При низкой температуре (15°) ответ зонда на конформационные перестройки в активном центре может быть уменьшен в результате частичного «замораживания» жидкокристаллической структуры.

Авторы благодарят А. А. Льва за интерес к теме данного псследования, полезные советы и критические замечания и Л. А. Пирузяна за по-

стоянное внимание к работе и обсуждение результатов.

Научно-исследовательский институт по биологическим испытаниям химических соединений Купавна, Московская обл.

Поступило 10 V 1973

Институт цитологии Академии наук СССР Ленинград

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. W. Albers, Ann. Rev. Biochem., 36, 2, 727 (1967). ² A. A. Lev, L. N. Pisareva, J. Membrane Biol., 2, 2, 108 (1970). ³ A. K. Sen, T. Tobin, R. L. Post, J. Biol. Chem., 224, 24, 6596 (1969). ⁴ B. К. Лишко, М. К. Малышева, Н. М. Полякова, Биохимия, 35, 3, 510 (1970). ⁵ G. E. Lindenmayer, A. Schwartz, Arch. Biochem. and Biophys., 140, 2, 371 (1970). ⁶ K. Nagai, G. E. Lindenmayer, A. Schwartz, ibid., 139, 252 (1970). ⁷ A. Yoda, Federat. Proc., 30, 3, 1169 (1971). ⁸ M. Mayer, Y. Avi-Dor, Isr. J. Med. Sci., 6, 6, 726 (1970). ⁹ H. M. McConnell, B. C. McFarland, Quart. Rev. Biophys., 3, 1, 91 (1970). ¹⁰ B. K. Кольтовер, Л. М. Райхмани др., ДАН, 197, № 1, 219 (1971). ¹¹ R. L. Post, A. K. Sen, Methods in Enzymol., 10, 762 (1967). ¹² M. Goldfield, Y. Hendel et al., Stud. Biophys., 20, 3, 161 (1970). ¹³ J. P. Changeau, J. Thiery et al., Proc. Nat. Acad. Sci. U.S.A., 57, 2, 335 (1965). ¹⁴ A. Аннаев, В. К. Кольтовер и др., Биофизика, 17, 2, 267 (1972).