УДК 547.497.6

ХИМИЯ

С. В. РОГОЖИН, Ю. А. ДАВИДОВИЧ, С. М. АНДРЕЕВ, А. И. ЮРТАНОВ

СИНТЕЗ ПЕПТИДОВ С ПОМОЩЬЮ ПОЛИМЕРНОГО МАКРОСЕТЧАТОГО N-ОКСИСУКЦИНИМИДА

(Представлено академиком А. Н. Несмеяновым 2 IV 1973)

В сообщении (1) мы описали простой и удобный способ синтеза равномерно сшитого, макросетчатого сополимера N-оксималеимида со стиролом или этиленом в гранулированной форме, исходя из стандартных сополимеров малеинового ангидрида с упомянутыми винильными мономерами. Высокая проницаемость полученных гранулированных сополимеров, способность набухать в различных органических растворителях и высокое содержание реакционноспособных N-оксисукцинимидных групп создают предпосылки для их эффективного использования в качестве полимерных активаторов карбоксильной группы N-защищенных аминокислот и пептидов.

В настоящей работе описывается синтез ряда модельных ди-, три- и тетрапентидов (см. табл. 2) методом полимерных активированных эфиров с применением полученных нами макросетчатых гранулированных поли-N-оксисукцинимидов. Для этой цели были использованы две фракции полимерных продуктов с размером гранул 20-80 и 200-400 и. Несмотря на большое различие размеров гранул, при проведении различных стадий пептидного синтеза не наблюдалось заметной разницы в отношении выхода продуктов реакции, что является свидетельством изотропности структуры и высокой проницаемости используемых полимеров. Кроме того, упомянутые гранулы отличались высокой механической прочностью и осмотической устойчивостью. Они не разрушались в условиях длительного перемешивания и легко отделялись от реакционного раствора фильтрованием. Ацилирование полимерных N-оксисукцинимидов N-защищенными аминокислотами (см. схему и табл. 1) осуществляли двумя способами дициклогексилкарбодиимидным (ДЦГК) (2) и трифторацетатным (ТФА) (3), причем второй метод оказался наиболее эффективным. Он экономичен и обеспечивает высокий выход полимерных активированных эфиров с минимальной затратой времени. Его применение устраняет проблемы, связанные с отделением от полимера труднорастворимой дициклогексилмочевины, которая образуется при использовании метода ДЦГК. Выход полимерного активированного эфира N-защищенной аминокислоты определяли по привесу полимерного продукта реакции и контролировали аминолизом полимера избытком циклогексиламина.

$$\begin{array}{c|c} 1. (\mathsf{CF}_3\mathsf{CO})_2\mathsf{O} & \mathsf{H}(\mathsf{NH}-\mathsf{CHR}-\mathsf{CO})_n-\mathsf{NHCHR}-\mathsf{COOX} \\ \hline 2. \mathsf{Y}-\mathsf{NH}-\mathsf{CHR}-\mathsf{COOH} & \mathsf{B} & \mathsf{Y}-\mathsf{NHCHR}-\mathsf{CO}(\mathsf{NH}-\mathsf{CHR}-\mathsf{CO})_n-\mathsf{NHCHR}\mathsf{COOX} \\ \hline \mathsf{CH}-\mathsf{C} & \mathsf{CH}-\mathsf{C} & \mathsf{CH}-\mathsf{C} \\ \mathsf{CH}-\mathsf{C} & \mathsf{C} & \mathsf{CH}-\mathsf{C} \\ \mathsf{CH}-\mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{CH}-\mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C}$$

Т-N-защитная группа: Х-С-зашитная группа: R-боковой радикал аминокислоты

N-защищенная аминокислота	Метод конденсации	Содержание ами- нокислотных остатков в сополимере, ммоз/г	N-защищенная амино- кислота	Метод конденсации	Содержание ами- покислотных остатков в сополимере, ммол/г
КБЗ — Pro — OH КБЗ — Pro — OH БОК — Pro — OH КБЗ — Fro — Leu — OH БОК — Ley — OH КБЗ — Cys (S — Bzl) — OH КБЗ — Leu — OH БОК — Ile — OH	ДЦГК ТФА ТФА ТФА ДЦГК ТФА ТФА ТФА	1,75 2,00 2,10 1,20 1,70 1,65 1,90 1,85	BOK — Gln — OH BOR — Trp — OH BOK — Ala — OH KE3 — Val — OH BOR — Asp — OH KE3 — Asp (OMe) — OH BOK — Gly — OH	ТФА ДЦГК ТФА ТФА ТФА ДЦГК	1,50 1,88 2,00 1,95 1,70 1,65 1,90

II римечание. Все аминокислоты L-конфигурации. Сополимер N-оксималеимида со стиролом, спитый 4 мол.% бензидина. КБЗ — N-бензилоксикарбонильная группа; БОК — N-трет.-бутилоксикарбонильная группа.

Таблица 2 Пептиды, синтезированные с помощью полимерного макросетчатого N-оксисукцинимида

Синтезированные пептиды	Аминокомпонент	Выход.	т. пл., °С	$[a]_D^{22}$
BOK - Leu - Phe - OMe BOK - Leu - Gly - Phe -	H - Phe - OMe H - Gly - Phe - OMe	99 96	88—90 98—99	$-23,5^{\circ}$ ($C = 0,5$; MeOH) -6,9 ($C = 0,5$; MeOH)
BOK - Ala - Leu - Gly -	H - Leu - Gly - Phe - OMe	95	155-156	-23,3 (C = 0.5; MeOH)
Phe - OMe BOK - Leu - Gly - OMe BOK - Leu - Gly - OEt	H - Gly - OMe H - Gly - OEt	100 98	132 78-79	-27.5 (C = 1; MeOH)
BOK - Pro - Leu - Gly -	H - Leu - Gly - OMe	94	120-122	-59,0 ($C=2$; ДМФА)
OMe KB3 - Pro - Leu - Gly -	H - Leu - Gly - OMe	87,5	122-123	-84.0 (C = 0.5; MeOH)
KB3 - Pro - Leu - Gly -	H - Gly - OMe	97	122-123	-80.0 (C = 0.5; MeOH)
OMe KE3 - Leu - Gly - OMe KE3 - Pro - Leu - OH	H - Gly - OMe Me ₃ Si - Leu - OSiMe ₃	100 97		-25.9 ($C = 0.5$; MeOH) -65.5 ($C = 1$; MeOH)
КБЗ — Leu — Gly — ОН КБЗ — Cys (S — Bzl) — Pro —	Me₃Si — GIy — OSiMe₂ Me₃Si — Pro — OSiMe₃	100 99	117 Масло	-24.6 (C = 1; MeOH) -77.6 (C = 0.8; CHCl3)
KE3 - Cys (S - Bzl) - Tyr -	Me ₃ Si — Tyr (SiMe ₃) — OSiMe ₃	97	193-194	-14.5 ($C=4.5$; пиридин)
OH KB3 — Pro — Pro — OH	Me ₃ Si — Pro — OSiMe ₃	97	188-190	-102 (C = 1; MeOH)

В табл. 1 приведены результаты синтеза полимерных активированных эфиров N-защищенных аминокислот по описанной схеме. Синтез пептидов осуществляли обработкой полимерного реагента II (1,0-1,2 экв.) эфиром аминокислоты (1 экв.) или пептида (1 экв.) при комнатной температуре в течение 5-10 час. в среде тетрагидрофурана ($T\Gamma\Phi$) или диметилформамида (ДМФА). В качестве аминокомпонента использовали также триметилсилильные производные аминокислот и пептидов (1 экв.). Как правило, после отделения полимерного продукта реакции фильтрованием и удаления растворителя из фильтрата мы получали в остатке хроматографически чистые пептиды с практически количественным выходом (табл. 2). Следует отметить, что применение триметилсилильных производных аминокислот и пептидов для аминолиза полимерных активированных эфиров не было известно в литературе. Эти производные не только легко доступны, но и обладают существенными преимуществами по сравнению с обычными эфирами аминокислот и пептидов, поскольку их использование в качестве аминокомпонентов приводит к получению легко гидролизующихся триметилсилиловых эфиров соответствующих нептидов. Кроме того, триметилсилильные производные аминокислот и пептидов обладают исключительно высокой растворимостью в различных органических растворителях, что,

как известно, имеет огромное значение для синтеза пептидов.

Высокая реакционноспособность, значительная реакционная емкость и гранульная форма используемых полимерных реагентов обеспечивают возможность проведения пептидного синтеза по описанной схеме колоночным методом, что создает предпосылки для автоматизации процесса синтеза. В настоящей работе описан в качестве примера синтез колоночным методом модельного дипептида КБЗ — Leu — Gly — OMe.

В заключение необходимо отметить, что сополимер, отделяемый от раствора после проведения реакции аминолиза полимерного активированного эфира, легко регенерируется до исходного поли-N-оксисукцинимида обработкой каким-либо простым амином, например избытком пиклогексилами-

на, и последующей промывкой растворителем.

Триметилсилильные производные аминокислот были получены обработкой соответствующих аминокислот небольшим избытком триметилсилилдиэтиламина при нагревании (4). Гомогенность пептидных производных устанавливали тонкослойной хроматографией на силикагеле (на пластинках «Силуфол») с использованием трех систем: μ -бутанол — вода — $CH_3COOH = 4:1:1$, этанол — вода = 7:3 и хлороформ — метанол — $CH_3COOH = 5:3:3$.

1. Полимерные N-оксисукцинимидные эфиры N-защищенных аминокислот. а) Метод ДЦГК. К суспензии гранульного сополимера N-оксималеимида со стиролом, сшитого 4 мол. % бензидина (1 экв. N—ОН-групп), в растворе БОК—Тгр (2 экв.) в смеси ДМФА (15%) и метиленхлорида (85%), охлажденной до 0°, прибавляли раствор ДЦГК (3 экв.) в той же смеси растворителей и перемешивали при 0° 15 час. Затем полимер отфильтровывали, промывали метанолом и эфиром и сушили в вакууме. Рассчитанное содержание БОК—Тгр в полученном полимерном реагенте 1,88 ммол/г. И.-к. спектр: 1820, 1740 см⁻¹.

б) Метод ТФА. К 5,00 г упомянутого в п. а) сополимера прибавляли 12 мл трифторуксусного ангидрида и выдерживали 30 мин. (при этом наблюдается саморазогрев набухшего полимера). Затем полимер отфильтровывали, промывали сухим эфиром и суспендировали в растворе 3,85 г (0,5 экв.) КБЗ — Рго — Leu — ОН в 37 мл сухого пиридина. Суспензию перемешивали 1 час, полимер отфильтровывали, промывали метанолом, увлажненным ацетоном, эфиром и сушили в вакууме. Выход полимерного активированного эфира 8,42 г (94% в расчете на исходный дипептид). Содержание дипептида в полимерном реагенте 1,15 ммол/г. И.-к. спектр 1820 см⁻¹. Аналогичные методики были использованы для получения дру-

гих полимерных активированных эфиров, указанных в табл. 1.

2. Синтез пептидов (типичные методики): а) БОК— Leu — Phe — OMe. К суспензии 1,5 г полимерного N-оксисукцинимидного эфира БОК — L — лейцина (2,64 ммол.) и 0,284 г (1,32 ммол.) хлоргидрата метилового эфира L-фенилаланина в 30 мл ДМФА прибавляли 0,185 мл (1,32 ммол.) триэтиламина и смесь перемешивали 10 час. при комнатной температуре. Полимер отфильтровывали, промывали ДМФА и фильтрат упаривали в вакууме. Остаток растворяли в смеси этилацетата и воды, органический слой промывали водой и сушили над сульфатом натрия. После удаления этилацетата получали 0,50 г кристаллического продукта с т. пл. $88-90^{\circ}$. Выход 98%. [α] $_{D}^{22}$ -23,5° (C=0,5; метанол). Элементный анализ подтверждает формулу C_{21} Н $_{32}$ N $_{2}$ О $_{5}$.

б) БКЗ — Leu — Gly — OH. К суспензии полимерного N-оксисукцинимидного эфира КБЗ — L — лейцина (19,5 ммол.) в 70 мл сухого ТГФ прибавляли бис-триметилсилилглицин (19,5 ммол.) и реакционную смесь перемешивали 16 час. при комнатной температуре. Полимер отфильтровывали, промывали ТГФ, эфиром, метанолом и фильтрат упаривали в вакууме до-

суха. Остаток растворяли в этилацетате, промывали раствор водой и сушили над безводным сульфатом натрия. После удаления этилацетата в вакууме было получено кристаллическое вещество с т. пл. 117°. Выход КБЗ — Leu — Gly — OH 100%. $[\alpha]_D^{21} - 24,6^\circ$ (C = 1; метанол). Эле-

ментный анализ подтверждает формулу Сав Ная № Оз.

в) БКЗ — Leu — Gly — Оме (колоночный метод). В верхнюю часть колонки $(1\times40~{\rm cm})$, заполненной полимерным N-оксисукцинимидным эфиром КБЗ — L — лейцина $(1.8~{\rm mmon/r})$, (гранулы $80-120~{\rm \mu})$ в ТГФ, вводили раствор метилового эфира глицина в ТГФ (при соотношении карбоксильного и аминокомпонента 2:1) и элюировали ТГФ со скоростью $12~{\rm mn}$ в час при 20° . Элюат детектировали с помощью проточного у.-ф. спектрофотометра типа «Увикорд» при $250~{\rm m\mu}$. Из фракции $30-60~{\rm mn}$, соответствующей единственному пику на спектрофотограмме, выделили после удаления растворителя хроматографически чистый дипептид с практически количественным выходом.

Институт элементоорганических соединений Академии наук СССР Москва Поступило 11 III 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. В. Рсгожин, Ю. А. Давидович и др., ДАН, 211, № 6 (1973). ² G. W. Anderson, I. E. Zimmerman, M. Callahan, J. Am. Chem. Soc., 86, 1839 (1964). ³ S. Sakakibara, N. Inukai, Bull. Chem. Soc. Japan, 38, № 11, 1979 (1965). ⁴ P. S. Mason, E. D. Smith, J. Gas. Chromatogr., 4, 398 (1966).