УДК 550.834

ГЕОФИЗИКА

в. з. Рябой

АНОМАЛИИ ВРЕМЕН ПРОБЕГА ВОЛН P_{np}^{M} (P_{n}) И СКОРОСТНЫЕ НЕОДНОРОДНОСТИ ВЕРХНЕЙ ЧАСТИ МАНТИИ ТЕРРИТОРИИ СССР

(Представлено академиком А. Я. Пейве 22 XI 1972)

С целью изучения строения верхней мантии выполнен анализ и обобщение результатов измерения времен пробега преломленных (слаборефрагированных) в верхней мантии волн, зарегистрированных при проведении глубинных сейсмических исследований в СССР, Норвегии и Японии. Эти волны принято обозначать индексами $P_{\rm пp}^{\rm M}$ (ГСЗ), или $P_{\rm s}$ (сейсмология). При максимальной длине годографов ГСЗ, равной 500—600 км, они проникают до глубин 80—100 км (4 , 8), вследствие чего в экспериментальных данных о временах их пробега содержится информация

о скоростном строении верхней части мантии.

В СССР исследования ГСЗ выполнены более чем на 200 профилях, на ~ 10% из них получены годографы длиной до 400-600 км на суше и до 150-200 км на море. Такие годографы зарегистрированы на Балтийском щите, на Урале, на Кавказе, в Средней Азии и в Казахстане ((³, ³) и др.), а также на Черном море (⁵) и в западной части Тихого океана (²). Результаты изучения при ГСЗ неоднородностей строения земной коры позволяют с высокой точностью определять влияние этих неоднородностей на времена пробега мантийных волн. Анализ годографов, полученных при ГСЗ за рубежом (¹°, ¹⁴-¹в) и по сейсмологическим данным ((˚, ¬) и др.). производится с учетом их меньшей точности и детальности по сравнению с данными ГСЗ в СССР. В общей сложности в работе использовано около 30 годографов ГСЗ и 10 сейсмологических годографов длиной до 600 км.

Сопоставление названных годографов показало, что различия во временах пробега рассматриваемых волн при одинаковом удалении от источника колебаний достигают 6-8 сек. для суши и 12-13 сек для всей совокупности сухопутных и морских данных. Примерно такие же различия во временах пробега волн P_n установлены в США (12). Слабая корреляция времен пробега волн $P_{\rm np}^{\rm M}$, зарегистрированных при ГСЗ на суше, с основными параметрами земной коры такими, как ее мощность, мощность осадочного слоя и др., изменяющимися в широких пределах (вычисленные значения коэффициентов корреляции не превышают 0.35-0.45), свидетельствует, что нельзя объяснить различия во временах про-

бега только различием строения земной коры.

Для исключения влияния неоднородностей земной коры годографы волн $P_{\pi p}^{M}$ были приведены к ее выровненной подошве. Опробование применявшейся методики пересчета годографов на теоретических моделях, а также оценка погрешностей пересчета, обусловленных возможными ошибками в измерении кажущихся скоростей и в определении параметров земной коры, показали, что абсолютная ошибка приведенных к подошве коры годографов ГСЗ в среднем составляет \pm (0,2-0,3) сек., а сейсмологических \pm (0,5-0,6) сек. (°). После пересчета к подошве земной коры расхождения между годографами волн $P_{\pi p}^{M}$ для разных районов достигают 5-6 сек., что значительно превышает их вероятную погрешность и

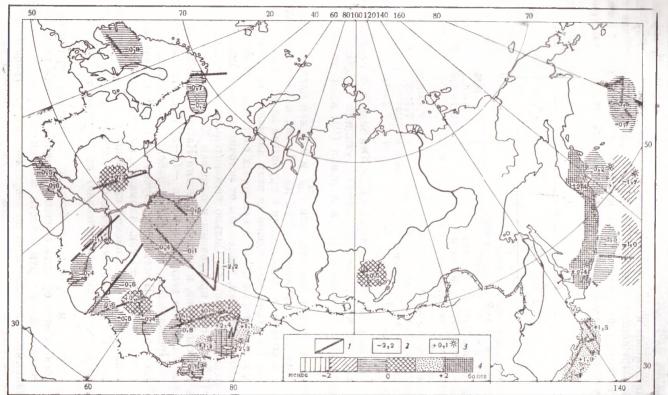


Рис. 1. Схома распредоления аномалий времен пробега волн $P_{\mathrm{пр}}^{\mathrm{M}}(P_n)$ в верхней части мантии. 1— профили ГСЗ; 2, 3 значения аномалий по данным ГСЗ (2) и по материалам сейсмологических исследований (3), в секундах указаны значения аномалий Δt^{M} , определенные по пересчитанным к подошве земной коры годографам волн $P_{\pi p}^{M}(P_{n}); 4$ — шкала значений апомалий $\Delta t^{\rm M}$, cer

свидетельствует о наличии в верхней части мантии значительных горизонтальных скоростных неоднородностей. Трансформированные таким образом годографы нередко имеют довольно сложную форму, указывающую на немонотонный характер изменения скорости с глубиной.

Удобным способом интегральной оценки скоростных неоднородностей и изучения их распределения по площади является определение аномалий времен пробега, под которыми будем понимать среднеарифметическое отклонение отдельных годографов от стандартного. Для получения стандартного годографа совокупность приведенных к подошве земной коры годографов волн $P_{\rm пp}^{\rm M}$, полученных при ГСЗ на суше, была линейно аппроксимирована по способу наименьших квадратов. Аномалии, определенные по приведенным к подошве земной коры годографам волн $P_{\rm np}^{\rm M}$, характеризуют выраженное в единицах времени пробега волн отличие средней скорости в верхней части мантии в конкретном районе от модели, соответствующей полученному по данным ГСЗ стандартному годографу для

Таблица 1

Район	о _г , км сек	v _{ср} , км/сек
D	0.4.0.0	0.7
Восточный склон Балтийского щита	8,1—8,2	8,4 8,5 8,2 8,3
Предкавказский прогиб, Скифская плита		0,0
Предуральский прогиб, западный Урал	8,2—8,4	8,2
Западные районы Туранской плиты	8,1-8,2	8,3
Северные районы Туранской плиты	8,1-8,2	8,0
Предкопетдагский прогиб, южный склон Каракум-		
ской платформы	8,2	8,3
Бухаро-Хивинская зона	$ \begin{array}{c} 8,2 \\ 8,1-8,2 \end{array} $	8,2
Северный Тянь-Шань и южное Прибалхашье	7,7—8,0	8,3 8,2 7,6—7,7
Северо-западная часть Центрально-Казахстанского		
массива	8,2-8,4	8,1

континентальной части территории СССР. Эта модель, по сравнению с моделями верхней части мантии, соответствующими стандартным годографам Джеффриса — Буллена (13) и Херрина (11), является более высокоскоростной.

. Аномалии времен пробега волн $P_{
m np}^{
m M}$ в верхней части мантии изменяются в пределах примерно от +2 до -2 сек., а их распределение по площади находится в соответствии с крупными элементами геологической структуры. На схеме распределения этих аномалий по площади, составленной для территории СССР и некоторых сопредельных стран, их значения отнесены к точкам, удаленным от источников колебаний на половину длины годографа (рис. 1). Сильно положительные аномалии, превышающие +(1,5-2) сек., приурочены к островам Хоккайдо и Хонсю, к Курило-Камчатской зоне, к районам южного Казахстана и Киргизии. Отрицательные аномалии величиной около -(1-2) сек. отмечены в пределах северного Предкавказья, в северных районах Казахстана и в западной части Тихого океана. В остальных изученных районах значения аномалий изменяются в пределах ±1 сек. Аномалии, определенные для одних и тех же соседних районов (Балтийский щит, южные районы Казахстана), по материалам ГСЗ и по сейсмологическим данным, находятся в удовлетворительном соответствии, что позволяет их сопоставлять и рассматривать совместно (рис. 1).

По аномалиям времен пробега, с точностью, примерно равной ± 0.1 км/сек, можно оценить значение средней скорости распространения сейсмических волн в верхней части мантии ($v_{\rm cp}$) путем сопоставления с аномалиями, определенными по теоретическим годографам для различных скоростных моделей. Нулевым аномалиям соответствуют значения средней скорости 8.15-8.20 км/сек, отрицательным — более высокие, а по-

дожительным — более низкие значения $v_{\rm cp}$. Соотношение $v_{\rm cp}$ и граничных скоростей распространения продольных сейсмических воли вдоль поверхности Мохоровичича $v_{\rm r}^{\rm M}$, определяемых при ГСЗ (1), имеет неоднознач-

тый характер.

Из рассмотрения табл. 1, где для некоторых районов приведены значения $v_{\rm cp}$ и $v_{\rm r}^{\rm M}$, следует, что в одних районах $v_{\rm cp}$ больше $v_{\rm r}^{\rm M}$, в других меньше или примерно равны. Это косвенным образом говорит о сложном и неодинаковом в разных районах характере изменения с глубиной скорости в верхней части мантии.

Таким образом, анализ данных ГСЗ и сейсмологических материалов о временах пробега волн $P_{\text{пр}}^{\text{M}}$ (P_{n}) свидетельствует о существовании в верхней части мантии весьма значительных вертикальных и горизонтальных

скоростных неоднородностей.

Всесоюзный научно-исследовательский институт геофизических методов разведки Москва

Поступило 14 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. А. Беляевский, В. З. Рябой, ДАН, 186, № 2 (1969). ² С. М. Зверев, Сборн. Матер. Международн. совещ. экспертов по взрывной сейсмологии, 1969. ³ И. В. Литвиненко, Сборн. Матер. 10 Ассамблен Европейской сейсмологической комиссии, 1, «Наука», 1970. ⁴ Н. Н. Матвеева, В. З. Рябой, Сборн. Вопросы геономии, в. 2, «Наука», 1972. ⁵ Ю. П. Непрочнов, Л. Н. Рыкунов, ДАН, 194, № 1 (1970). ⁶ И. Л. Нерсесов, Т. Г. Раутпан, Сборн. Экспериментальная сейсмика, «Наука», 1964. ⁷ Г. Д. Панасенко, Сейсмические особенности северовостока Балтийского щита, «Наука», 1969. ⁸ В. З. Рябой, Физика Земли, № 3 (1966). ⁹ В. З. Рябой, Л. В. Егорова, Сборн. Разведочная геофизика, в. 58, 1972. ¹⁰ И. К. Туезов, Э. Г. Жильцов, Сборн. Методика презультаты исследований земной коры и верхней мантии, «Наука», 1972. ¹¹ Е. Неггіп, Е. Р. Агпоld et al., Bull. Seismol. Soc. Ат., 58 (1968). ¹² Е. Herrin, J. Taggart, Bull. Seismol. Soc. Am., 52 (1962). ¹³ Н. Jeffreys, K. Bullen, Seismological Tables, London, 1940. ¹⁴ W. Ludwig, S. Murauchi et al., J. Geophys. Res., 76, № 26, 10 (1971). ¹⁵ В. Магкуагd, А. Sellevol, R. Warrick, Bull. Seism. Soc. Am., 61 (1971). ¹⁶ S. Murauchi, H. Hotta et al., J. Seismol., Soc. Japan, 17, № 4 (1964).