УДК 548.736

КРИСТАЛЛОГРАФИЯ

Ю. Н. САФЬЯНОВ, Р. И. БОЧКОВА, Э. А. КУЗЬМИН, академик Н. В. БЕЛОВ

ПРИМЕНЕНИЕ МЕТОДА РОМБОВ К РАСШИФРОВКЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ КSmF4

Исследуемые кристаллы этого редкоземельного фторида синтезированы в лаборатории гидротермального синтеза Института кристаллографии АН СССР и химический анализ ограничивался лишь качественным определением атомов Sm, K и F.

Для исследования был отобран кристаллик желтого цвета с размерами $0.1\times0.15\times0.4$ мм 3 . Параметры элементарной ячейки определялись из рентгенограмм качания и уточнялись по разверткам нулевых слоевых линий: $a=6.24,\ b=15.57,\ c=3.73$ Å. Трехмерный экспериментальный мате-

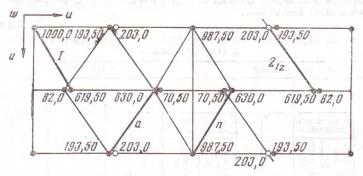


Рис. 1. Трехмерная функция Патерсона в точечном виде. Выделена система ромбов пиков для отрезка I

риал, полученный на интегрирующем гоннометре Вейсенберга по эквинаклонной схеме (Ag K_{α} -излучение, max $\frac{\sin \theta}{\lambda} = 0.79 {\rm \AA}^{-1}$), состоял из 160 независимых ненулевых отражений $(hk0-hk4,\ 0kl-1kl),$ оцененных по маркам почернения с шагом 214. Зональные и серпальные погасания делают возможными две федоровские группы (ф.г.) $C_{2v}^{\mathsf{F}} = Pna2_{\mathsf{I}}$ и $D_{2h}^{\mathsf{I}\mathsf{G}} = Pnam$. Интенсивности, исправленные на LP-факторы, были использованы для построения функции Патерсона (наиболее сильные пики выделены на рис. 1) *, большинство пиков которой сосредоточено в харкеровских сечениях uv0 и $uv^{1}/_{2}$, что значительно затрудняло анализ. Отсутствие пиков на харкеровском проколе 00w и наличие их на харкеровском сечении $UV^{1}/_{2}$ свидетельствовало в пользу нецентросимметричной ф.г. $C_{2v}{}^{\bullet} = Pna2_1$. В этой группе одна связка образует параллелограмм и тем самым отобранная четверка атомов связывается псевдоцентром инверсии, и соответствующая функция M_4 выделяет два изображения структуры (4), что не позволяет ограничиться нахождением, в качестве ключевых пиков, одних только тяжелых Sm. Для расшифровки функции Патерсона применен метод ромбов (2), дающий возможность найти две связки атомов.

Выбрав на функции Патерсона пик 619,50 ($u_1 = 50$, $v_1 = 12$, $w_1 = 50$) и соединив его с началом координат, фиксируем начальный отрезок I. Ис-

[•] Первая цифра у пика — вес, вторая — координата по оси W в сотых долях.

пользуя априорную диаграмму ромбов для ф.г. C_{2v} = $Pna2_1$ (*), выделяем систему ромбов и отмечаем жирными линиями стороны, симметричные исходному отрезку (рис. 1). Ромб от клиноплоскости n определяет координату x, и ромб от плоскости a — координату y. Третья координата по оси z в данной ф.г. нефиксирована и может быть задана произвольно. Сателлитные ромбы от плоскостей скольжения согласуются между собой через

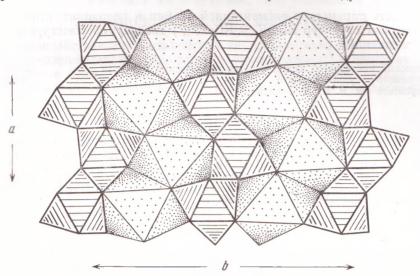


Рис. 2. $KSmF_4$. Проекция кристаллической структуры на илоскость xy

основной ромб — от двойной винтовой оси 2_1 (4). Учитывая мощность пиков и фиксированное положение второго атома относительно первого, получаем координаты двух независимых Sm и K.

Построенный по этим двум атомам, первый синтез электронной плотности позволил локализовать еще 4 атома, отождествленные с F, и тем самым конкретизировать химическую формулу — $KSmF_4$ (Z=4). Уточнение

структуры методом наименьших квадратов снивило фактор расходимости с 14,3 до 8,4%. Специфическое расположение атомов в сечениях, перпендикулярных оси z, позволяет заменить нецентросимметричную ф.г. $C_{2v}^9 = Pna2_1$ на центросимметричную $D_{2h}^{16} = Pnam$ со всеми атомами на зеркальных плоскостях m ($z = \frac{1}{4}$ п $z = \frac{3}{4}$).

Структура характеризуется изотропной тепловой поправкой B=0.44 ${
m \AA}^{-1}$. Координаты базисных

 ${\rm T} \ {\rm a} \ {\rm f} \ {\rm n} \ {\rm n} \ {\rm u} \ {\rm u} \ {\rm a} \ {\rm 1}$ Координаты базисных атомов KSm F $_{\rm 1}$

Атом	x/a	y/b	2/G
Sm	0,250	0,440	0,250
K	0,273	0,205	0,750
F ₁	0,119	0,039	0,250
F ₂	-0,009	0,446	0,750
F ₃	0,384	0,366	0,750
F ₄	0,083	0,301	0,250

атомов приведены в табл. 1. Проекция структуры в полиэдрах на плоскость xy представлена на рис. 2. Для структуры характерен трехмерный каркас из топологически одинаковых девятивершинников Sm и K; это тригональные призмы с тремя пирамидами — полуоктаэдрами — на каждой боковой грани призмы. Одноименные девятивершинники соединяются между собой вдоль оси c по основанию тригональной призмы. Вдоль оси a соседние Sm-девятивершинники, располагающиеся на уровнях $^{1}/_{4}$ и $^{3}/_{4}$ по c, связываются общими ребрами пирамид в бесконечные гофрированные стенки, перпендикулярные оси b. Соседние K-полиэдры находятся на одной высоте по c и, подобно самарию, соединяются по общей грани пирамиды, образуя стенку. Сопряжение Sm- и K-стенок осуществляется по общим

граням пирамид, если полиэдры находятся на одной высоте, и с разных уровней по ребрам. Межатомные расстояния в полиэдрах находятся в следующих пределах:

$$\mathrm{Sm}-\mathrm{F}=2{,}32-2{,}55\ \mathrm{\AA}$$
 при $\mathrm{F}-\mathrm{F}=2{,}52-2{,}99\ \mathrm{\AA},$ $\mathrm{K}-\mathrm{F}=2{,}61-3{,}33\ \mathrm{\AA}$ при $\mathrm{F}-\mathrm{F}=2{,}79-4{,}08\ \mathrm{\AA}.$

Близость параметров элементарной ячейки и координат атомов кристаллических структур $KSmF_4$ и $KCeF_4$ (5) говорит об изоструктурности этих соединений.

Горьковский исследовательский физико-технический институт Горьковского государственного университета им. Н. И. Лобачевского

Поступило 18 V 1973

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Э. А. Кузьмин, В. В. Илюхин, Н. В. Белов, ДАН, 205, № 2, 339 (1972). ² Э. А. Кузьмин, В. П. Головачев, Н. В. Белов, ДАН, 192, № 1, 86 (1970). ³ Э. А. Кузьмин, В. П. Головачев и др., Примые и патерсоновские методы расшифровки кристаллических структур, Кишинев, 1972. ⁴ Э. А. Кузьмин, В. П. Головачев, 1972. ⁴ Э. А. Кузьмин, В. П. Головачев, Н. В. Белов, Кристаллография, 17, № 3, 477, (1972). ⁵ G. Brunton, Acta crystallogr., B, 25, № 3, 600 (1969).