ФИЗИЧЕСКАЯ ХИМИЯ

В. П. СОЛНЦЕВ, М. Я. ЩЕРБАКОВА

ИЗУЧЕНИЕ МЕТОДОМ Э. П. Р. СТРУКТУРНЫХ ДЕФЕКТОВ В ОБЛУЧЕННЫХ ЦИРКОНАХ

(Представлено академиком С. Л. Соболевым 25 ІХ 1972)

Многочисленными исследованиями установлено, что в структуру природного циркона могут входить разнообразные элементы — примеси, содержание которых иногда достигает нескольких процентов. Если эти примеси парамагнитны, они могут быть обнаружены и исследованы по спектрам э.п.р. В ряде случаев примесные центры и собственные структурные дефекты становятся парамагнитными в результате захвата или потери электрона при облучении и соответственно тоже проявляются в спектрах э.п.р. Целью настоящей работы было изучение в структуре циркона дефектов ассоциированных с примесными элементами, которые при обычных условиях не дают спектров э.п.р.

Циркон является ортосиликатом циркония $ZrSiO_4$ (пространственная группа $14/amd(D_{4h}^{19})$). Катион Zr^{4+} расположен в центре двух кислородных тетраэдров, деформированных по оси C_{i4} и повернутых вокруг этой оси один относительно другого на 90° . Направление C_{i4} каждого тетраэдра совпадает с кристаллографической осью C. Угол, образуемый связью Zr-O с осью C, составляет 32° и $77^\circ37'$ соответственно. Ион Si^{4+} находится в центре кислородного тетраэдра и направление Si-O с осью C составляет

угол 48°45′ (¹).

Прозрачные и полупрозрачные с желтоватым оттенком монокристаллы циркона из уральских месторождений исследовались на спектрометре э.п.р. на частоте 9,8 Ггц при температуре 300 и 77° К. В изучаемых образцах до облучения наблюдались спектры э.п.р. от следующих примесных элементов в положении Zr^{4+} : Gd^{3+} (2), Tb^{4+} (3), Nb^{4+} (6), Ti^{3+} (8).

Кроме того, в некоторых образцах отмечен спектр радикала О- (4, 5)

(потеря электрона атомом кислорода).

После облучения при 77° К (Со60, 5.107 рад) без размораживания в спектрах всех образцов дополнительно наблюдались две интенсивные групны линий со средним значением g-фактора $\langle g \rangle < 2{,}00$ и $\langle g \rangle > 2{,}00$. При повышении температуры образца до комнатной спектры, появившиеся после облучения, исчезали в течение 5 мин. Первая группа линий, как показало изучение угловых зависимостей, обусловлена двумя низкосимметричными центрами с и в. Центры описываются электронным спином $S = \frac{1}{2}$ и сверхтонкой структурой (с.т.с.) от Zr^{91} (естественная распространенность 11,23%, ядерный спин $Zr^{91} - J = \frac{5}{2}$). Как следует из полученных значений д-факторов и констант с.т.с. (табл. 1), эти центры комплексы $Zr^{3+}(^{2}D, 4d^{4})$. Принимая во внимание максимальное количество неэквивалентных положений комплексов $Zr^{3+}(\alpha)$ — четыре, а также направления главных значений (g-фактора $g_x \parallel [110]$), дефект, обусловливающий наблюдаемое искажение комплекса, согласно (9), следует отнести к позиции g (симметрия C_2) — позиции междоузлия. С другой стороны, направления g-факторов для $Zr^{3+}(\alpha)$ близки к таковым для искаженного координационного комплекса с конфигурацией в позиции а (симметрия D_{2d}) — позиции катиона Zr^{4+} (1, 6). Соотношения $g_z < g_+ = 1/2 (g_x + g_y)$ и $A_z > A_\perp = \frac{1}{2}(A_x + A_y)$ соответствует локализации неспаренного электрона на нижнем $d_{x^2-y^2}$ уровне (7).

ВСЕХ ИССЛЕДОВАННЫХ ОБРАЗЦАХ ИНТЕНСИВНОСТЬ СПЕКТРА $\Delta \Gamma$ (α), кортивата с содержанием щелочей (Li, Na, K), составляющим по данымического анализа от 0 до 0,4%. Сказанное позволяет заключить, комплексы $\mathrm{Zr}^{3+}(\alpha)$ стабилизируются вблизи междоузельного ионаминенсатора, щелочного элемента Me^+ , который весьма незначительно изменяет локальное окружение катиона, однако понижает его симметрию C в соответствии с симметрией позиции.

Таблица 1 Параметры спектров э.п.р. радиационных центров в 7-облученных цирконах

NaNe II.II.	Тип центра	Главные значения g-тензора (±0,001)	Направл. главн. знач. g-тензора		неэк-	Константы с.т.с.	
			θ° (±3°)	φ° (±3°)	Число вивал. жений	$(\pm 0.5 \cdot 10^{-4} \text{ cm}^{-1})$	Изотоп
1	$\mathrm{Zr}^{3+}\left(lpha \right)$	$g_z = 1,882$ $g_y = 1,923$	5 85	45 225	4	$A_z = 81,7$ $A_y = 46,7$	Zr ⁹¹
2	$Z^{r_{3+}}(\beta)$	$\begin{array}{c} g_x = 1,934 \\ g_z = 1,977 \\ g_y = 1,913 \\ g_x = 1,874 \end{array}$	90 75 90 15	135 0 90 180	4	$A_x = 45,1$ $A_z = 23,0$ $A_y = 49,5$ $A_x = 74,6$	Zr ⁹¹
3	$\mathrm{Zr}^{3+}\left(\gamma\right)$	$g_c = 1,879$	10	100	4	$A_{C} = 77,0 * $ $A_{C} = 3,0$	Zr ⁹¹ Y ⁸⁹
4	AlO ₄ 4-	$g_z = 2,051 g_y = 2,012 g_x = 2,002$	60 90 30	0 90 180	4	$A_z = 6,4$ $A_y = 7,6$ $A_x = 7,6$	Al ²⁷
5	SiO ₄ 8-	$g_z = 2,062$ $g_y = 2,004$	50 90	90	4	$A_C = 19,0$	Si ²⁹
6	$[SiO_3 - SiO_4]^{5-}$	$g_x = 2,003$ $g_x = 2,0169$ $g_x = 2,0080$	40 42 40	180 0 90	4	$A_{1,x} = A_{2x} = 8,5$ $A_{1,y} = A_{2,y} = 8,0$	Si ²⁹
	— 2ݳ+	$g_z = 0,0023$	48	180		$A_{1,z} = A_{2,z} = 8.0$ A = (2,2-1,3)	Y89

^{*} g_C и A_C — значения g-фактора и констант с.т.с. при ориентации $H \parallel C$, где C — направление главной кристаллографической оси.

Для $Zr^{3+}(\beta)$ дефект, обусловливающий искажение комплекса, соответствует положению кислорода h (симметрия C_3) (°). Действительно, для него максимальное число неэквивалентных положений 4, одно из направлений g-фактора — $g_x \parallel [100]$, а направление, определяющее максимальный градиент кристаллического поля g_z параллельно Zr—О. Для этого комплекса $g_2 > g_\perp$ и $A_2 < A_\perp$, что указывает на локалиазцию d^4 -электрона на нижнем $d_{3z^2-r^2}$ -уровне. Согласно приведенным данным, $Zr^{3+}(\beta)$ стабилизируется вблизи кислородной вакансии, которая и обусловливает градиент кристаллического поля в направлении Zr—О.

В цирконах с повышенным содержанием иттрия (до 0,6%) после облучения наблюдался слабый спектр от комплексов $Zr^{3+}(\gamma)$, имеющих характерную дополнительную с.т.с. от двух атомов с ядерными спинами $J_1 = J_2 = {}^{1}/{}_{2}$ (100%) (см. табл. 1). В данном случае можно заключить, что $Zr^{3+}(\gamma)$ стабилизируется вблизи двух атомов иттрия, находящихся в ближайших катионных позициях.

Вторая группа линий с $\langle g \rangle > 2,00$, возникающая после облучения, обусловлена центрами, связанными с захватом «дырки» (потеря электрона) кислородом. Эти центры ($N \ge 4-7$ табл. 1) низкосимметричны, имеют электронный спин $S = \frac{4}{2}$ и различную сверхтонкую структуру.

Для центра 4 максимальное количество неэквивалентных положений, а также направления главных значений *g*-факторов (см. табл. 1) указывают на положение дефекта в позиции кислорода (h). Поскольку для него

направление g_z близко к направлению Si-O, причем $g_z > 2,00$, g_x , $g_y \sim 2,00$, а с.т.с. от Al^{27} мала, рассматриваемый центр по аналогии с (10) следует отождествить с радикалом O^- (AlO_4^{4-}). Присутствие Al (0,1-0,4%) в изучаемых образцах было подтверждено данными спектрального анализа. Очевидно, центр 5, для которого отмечена с.т.с. от одного атома Si^{29} с малыми расшеплениями (табл. 1), аналогичен по своей структуре 4 и может быть представлен радикалом O^- (SiO_4^{3-}).

В цирконах с большим содержанием иттрия после γ -облучения наблюдается спектр центра 6, имеющий (аналогично 4 и 5) локальную симметрию C_s . Центр характеризуется сложной с.т.с. При ориентации $H \parallel C$ спектр состоит из пяти групп линий с соотношением интенсивностей 0,004:0,05:1:0,05:0,004. Каждая группа — триплет с интенсивностями 1:2:1. Первая с.т.с. определяется двумя эквивалентными атомами Si^{29} и вторая — двумя Y^{89} находящимися в ближайших позициях Zr^{4+} (величина расщепления от Y^{89} изменяется от 2,2 до 1,3 э). Этот центр может быть объяснен, если предположить, что в цирконе с повышенным содержанием иттрия имеются пары $Y^{3+} - Y^{3+}$, стабилизированные кислородной вакансией и образующие устойчивые зарядовоскомпенсированные ассоциации.

При облучении «фрагмент» из трех кислородов внутри этой ассоциации захватывает «дырку», образуя радикал $[SiO_3 - SiO_4]^{5-}$. По аналогии с (12) для него неспаренный электрон локализуется на p_π -орбитах трех кислородов, причем $g_z \sim 2{,}00$, g_x , $g_y > 2{,}00$, а среднее значение g-фактора

⟨g⟩ меньше, чем для радикала О-.

Проведенное исследование показало, что при γ -облучении цирконов в них одновременно образуются центры двух тппов: электронные, связанные с захватом электрона катионом Zr^{4+} (центры $Zr^{3+}(\alpha)$, $Zr^{3+}(\beta)$, $Zr^{3+}(\gamma)$), и дырочные, связанные с потерей электрона одним из кислородов (центры 4, 5, 6). Рассмотрение структуры центров позволило установить связь центра $Zr^{3+}(\alpha)$ с $Me^+(Li, Na, K)$, центров $Zr^{3+}(\beta)$, 6,7 — с кислородными вакансиями, центра 4 — с присутствием примесного Al в позиции Si^{4+} , а также наличие в цирконе парных замещений $Zr^{4+} - Zr^{4+}$ на $Y^{3+} - Y^{3+}$.

Таким образом, основываясь на данных по радиационным парамагнитным центрам, возможна идентификация рассмотренных выше форм примесных элементов и дефектов в ZrSiO₄. Нам представляется, что соотношение интенсивностей парамагнитных центров в цирконе может быть использовано как одна из характеристик условий минералообразования, поскольку именно последние являются определяющим фактором в формировании собственных и примесных дефектов.

Институт геологии и геофизики Сибирского отделения Академии наук СССР Новосибирск Поступило 21 IX 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. W. G. Wyckoff, Crystal Structures, 3, N.Y., 1965. ² D. R. Hutton, G. J. Troup, Brit. J. Appl. Phys., 15, 405 (1964). ³ D. R. Hutton, J. Milne, J. Phys. C, 2, 2297 (1969). ⁴ М. И. Самойлович, А. И. Новожилов, Г. П. Барсанов, Геохимия, 4, 494 (1968). ⁵ В. М. Винокуров, И. М. Гайпуллина п др., Кристаллография, 16, 318 (1971). ⁶ В. М. Винокуров, М. М. Заринов и др., ФТТ, 5, 1034 (1963). ¬ J. D. Swalen, J. A. Ibers, J. Chem. Phys., 37, 17 (1962). ѕ В. П. Солнцев, М. Я. Щербакова, ЖСХ, 4, 929 (1972). ѕ М. Л. Мейльман, Спектры ЭПР точечных дефектов и симметрия кристаллических структур, Кандидатская диссертация, М., 1968. ¹0 М. С. М. O'Brien, Proc. Roy. Soc. A, 231, 404 (1955). ¹¹ Р. R. Edwards, S. Subramanian, M. C. R. Symons, J. Chem. Soc. A, 12, 2985 (1968). ¹² Р. С. Tayler, D. L. Criscom, P. J. Bray, J. Chem. Phys., 54, 748 (1971).