УДК 513.838

MATEMATUKA

А. С. СОЛОДОВНИКОВ

ПСЕВДОРИМАНОВЫ АНАЛИТИЧЕСКИЕ ПРОСТРАНСТВА С ПОЛЮСАМИ

(Представлено академиком И. Г. Петровским 27 XII 1972)

Пусть V — псевдориманово пространство размерности n. Условимся называть точку $q \in V$ полюсом, если V допускает свободное вращение вокруг q, т.е. стационарная подгруппа точки q имеет размерность n(n-1)/2.

В данной работе изучаются полные аналитические псевдоримановы пространства V индекса * 1, содержащие один или большее число полюсов; при этом дается фактическое построение некоторого класса пространств V со многими полюсами. Мы рассматриваем в основном случай n=2, хотя результаты распространяются на случай любой размерности ** n.

 1° . Одна лемма локального характера. Пусть V — двумерное аналитическое псевдориманово пространство, q — его полюс, U — малая окрестность точки q. Изотропные геодезические, проходящие через q, разбивают U на четыре угла. Для геодезических, проходящих через q в одной паре углов, имеем $ds^2 < 0$ (минус-углы), для геодезических в другой паре углов $ds^2 > 0$ (плюс-углы).

Внутри каждого из минус-углов можно ввести «полярные» координаты ρ , φ , где $i\rho$ есть «расстояние» до q (по геодезической), а φ — гиперболический угол в точке q, отсчитываемый от фиксированного направления. Так как q — полюс, то будем иметь внутри каждого минус-угла

$$ds^2 = -d\rho^2 + f(\rho) d\varphi^2. \tag{1}$$

Аналогичным образом внутри плюс-углов будет

$$ds^2 = d\rho^2 + f(\rho) d\phi^2, \tag{2}$$

где ρ есть расстояние до q, а ϕ — гиперболический угол. Лемма. При малых значениях $|\rho|$ справедливы формулы

$$f(\rho) = \rho^2 + \sum_{n=2}^{\infty} a_{2n} \rho^{2n},$$
 (3)

$$\tilde{f}(\rho) = -\rho^2 + \sum_{n=2}^{\infty} (-1)^n a_{2n} \rho^{2n}. \tag{4}$$

Тем самым переход от (1) к (2) сводится к замене ρ на $t\rho$.

 2° . Плюс-функция и минус-функция полюса. Пусть V — такое, как указано в п. 1° и, сверх того, полное и односвязное. Тогда, как известно, V гомеоморфно плоскости.

T е о р е м а. \varPi усть q — полюс пространства V. Тогда функции $f(\rho)$ и $f(\rho)$ допускают однозначные аналитические продолжения $F(\rho)$ и $F(\rho)$

* Под индексом мы понимаем число «отрицательных квадратов» в каноническом представлении формы ds^2 в каждой точке.

^{**} Π ри n=4 указанная в работе конструкция может представить некоторый интерес с точки зрения общей теории относительности. На этих вопросах мы не останавливаемся.

на всю ось ρ . При этом $F(\rho) \ge 0$, $\widetilde{F}(\rho) \le 0$. Если c есть нуль какой-либочиз функций $F(\rho)$ или $\widetilde{F}(\rho)$, то эта функция четна относительно $\rho = c$, причем ее разложение в ряд в окрестности c начинается c члена $\alpha(\rho-c)^2$, $\alpha \ne 0$.

Условимся называть F(
ho) минус-функцией, а $\widetilde{F}(
ho)$ — плюс-

функцией полюса q.

Из перечисленных свойств плюс- и минус-функций следует, что если какая-либо из них имеет нуль, отличный от $\rho=0$, то она является четно-периодической функцией.

Мы исследуем два случая.

Случай 1. Функции $F(\rho)$ и $\widetilde{F}(\rho)$ имеют каждая только по одному нулю (т.е. $F(\rho)>0$ и $\widetilde{F}(\rho)<0$ при $\rho\neq 0$). В этом случае пространство V

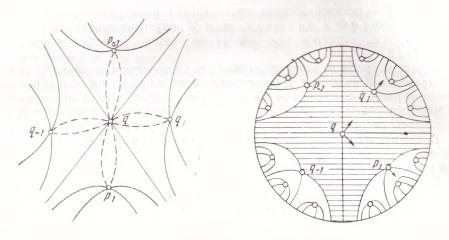


Рис. 1

Рис. 2

устроено следующим образом. Рассмотрим псевдоэвклидову плоскость E с метрикой $-dy_1^2+dy_2^2$. В области $-y_1^2+y_2^2<0$ введем полярные координаты ρ , φ ($y_1=\rho$ ch φ , $y_2=\rho$ sh φ), в области $-y_1^2+y_2^2>0$ — полярные координаты τ , φ ($y_1=\tau$ sh φ , $y_2=\tau$ ch φ). Оказывается, пространство V может быть получено из плоскости E путем следующей перестройки метрики последней:

в области $-y_1^2 + y_2^2 < 0$: $-d\rho^2 + \rho^2 d\phi^2 \rightarrow -d\rho^2 + F(\rho) d\phi^2$, в области $-y_1^2 + y_2^2 > 0$: $d\tau^2 - \tau^2 d\phi^2 \rightarrow d\tau^2 + F(\tau) d\phi^2$.

Аналогичным образом описывается строение пространства V, если $\dim V > 2$.

Случай 2. Каждая из функций $F(\rho)$ и $F(\rho)$ имеет вид «симметричной волны». Под этим мы подразумеваем, что указанные функции периодичны, причем

$$F(\rho) = F(a - \rho), \quad \widetilde{F}(\rho) = \widetilde{F}(b - \rho),$$

где a п b — периоды функций $F(\rho)$ и $\widetilde{F}(\rho)$ соответственно.

В этом случае полюс q имеет четыре «соседних» полюса: q_{-1} , q_1 и p_{-1} , p_1 (см. рис. 1); в полюсах q_{-1} , q_1 фокусируются отрезки длины ia минус-геодезических, выходящих из q, а в p_{-1} , p_1 — отрезки длины в плюс-геодезических, выходящих из q (на рис. 1 сплошные линии изображают изотропные геодезические, а пунктирные — отрезки неизотропных). При этом окрестности всех пяти полюсов изометричны.

Каждый из полюсов q_{-1} , q_1 , p_{-1} , p_1 имеет еще три соседних, каждый изэтих — еще трех соседей и т. д. Качественная картина расположения всех полюсов и соответствующих изотронных геодезических приведена на рис. 2, где пространство изображено в виде внутренности круга*. Окрестности всех полюсов изометричны.

Обозначим через Г дискретную группу, порожденную изометриями $q \rightarrow q$, и $q \rightarrow p$, (на рис. 2 показаны перехолящие одна в другую при этих

изометриях). Фактор-пространство V/Γ можно представлять в виде заштрихованного «восьмиугольника» на рис. 2, в котором следует отождествить вершины q_{-1} , q_1 , p_{-1} , p_1 , а также каждые две стороны, согласованно выходящие на «абсолют»; при этом восьмиугольник представляет V / Г дважды.

Легко видеть, что указанные отождествления лают (топологически) сферу с четырьмя выколотыми точками. Мы приходим, следовательно, к такому заключению: если в пространстве Vсуществует полюс, которому отвечают функции

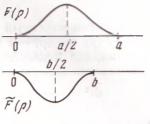


Рис. 3

- $F(\rho)$ и $\widetilde{F}(\rho)$, являющиеся «симметричными волнами», то существует пространство V', гомеоморфное сфере без четырех точек и локально изометричное V.
- 3°. Фактическое построение пространств со многими полюсами. Следующая конструкция позволяет получить целый класс пространств, исследованных в п. $\hat{2}^{0}$ (случай 2). Мы исходим из пары функций $F(\rho)$, $F(\rho)$, обладающих свойствами:

1) $F(\rho)$ и $F(\rho)$ аналитичны на всей оси ρ ; F(0) = F(0) = 0;

2) $F(\rho)$ имеет некоторый период a, причем $F(\rho) = F(a - \rho)$; $F(\rho)$

имеет период b и $\widetilde{F}(\rho) = \widetilde{F}(b-\rho)$;

3) внутри отрезка [0, a] производная $F'(\rho)$ обращается в нуль только при $\rho = a/2$, причем $F''(a/2) \neq 0$; аналогичное условие для функции $F(\rho)$ (см. рис. 3);

4) $\max F(\rho) = -\min \widetilde{F}(\rho);$

5) в окрестности точки $\rho = 0$ справедливы равенства (1) и (2), где $f(\rho)$ следует заменить на $F(\rho)$, а $\overline{f}(\rho)$ на $F(\rho)$.

Без ограничения общности можно еще считать, что $\max F(\mathfrak{o}) = 1$

II F''(0) = 2.

Рассмотрим двумерную сферу $x^2 + y^2 + z^2 = 1$, а также функцию

$$\lambda = \frac{xy}{\sqrt{1-x^2}\sqrt{1-y^2}},$$

определенную на всей сфере, за исключением четырех точек $(\pm 1, \pm 1, 0)$. Условие xy > 0 выделяет на сфере две связных области; условие xy < 0дает еще две области. В каждой из четырех областей введем новые координаты ρ , φ и новую метрику ds^2 следующим образом: для областей xy>0

$$F(\rho) = \lambda, \quad e^{2\varphi} = y / x; \quad ds^2 = -d\rho^2 + F(\rho) d\varphi^2,$$
 (5)

причем ρ возрастает от 0 до a, когда z возрастает от -1 до 1; для областей xy < 0

 $\widetilde{F}(\rho) = \lambda$, $e^{2\varphi} = -x/y$; $ds^2 = d\rho^2 + \widetilde{F}(\rho) d\varphi^2$, (6)

причем ρ возрастает от 0 до b, когда z возрастает от -1 до 1.

T е о р е м а. На сфере $x^2 + y^2 + z^2 = 1$, из которой исключены 4 точки $(\pm 1, \pm 1, 0)$, можно определить аналитическую псевдориманову метрику c двумя полюсами p=(0,0,1) и q=(0,0,-1), для которой введенные выше координаты ρ и ϕ являются полярными координатами (с центром q), а метрика в этих координатах принимает вид (5). (6).

^{*} На рисунке показан полюс q, четыре соседних с ним полюса, а также соседние с этими четырьмя; дальнейшие полюса уже не указаны ввиду уменьшения размеров рисунка с приближением к границе круга.

Описанный выше класс пространств не является пустым, так как пары функций $F(\rho)$, $F(\rho)$ с перечисленными в начале п. 3° свойствами действительно существуют. Можно, например, взять двоякопериодическую функцию комплексного переменного ch z (эллиптический косинус z), отвечающую «модулю» $k=1/\sqrt{2}$, и положить

$$F(z) = \operatorname{ch}^{z}(z\sqrt{2} + a/2),$$

где 2a — вещественный период функции ch z (мнимый период будет 2ai). Тогда $F(\rho)$ и $F(\rho) = F(i\rho)$, где ρ вещественное, — искомая пара функций. Заметим, что такому выбору $F(\rho)$ и $F(\rho)$ будет отвечать на сфере (с исключенными четырьмя точками) метрика

$$ds^{2} = -\frac{1+z^{2}}{4z^{2}\sqrt{1-x^{2}}\sqrt{1-y^{2}}}\left[2dx\,dy + xy\left(\frac{dx^{2}}{1-x^{2}} + \frac{dy^{2}}{1-y^{2}}\right)\right]$$

(нерегулярность при z=0 — устранимая); при этом векторное поле, от вечающее однопараметрической группе вращений вокруг полюсов p и q имеет координаты

$$\dot{x} = \frac{-x}{1 + (1 - y^2)/(1 - x^2)} \,, \quad \dot{y} = \frac{y}{1 + (1 - x^2)/(1 - y^2)} \,.$$

 4° . Обобщение конструкции пункта 3° на n-мерный случай. Если в условиях п. 3° положим $x_1=(x+y)/\sqrt{2}$, $x_2=(x-y)/\sqrt{2}$, то уравнение сферы останется $x_1^2+x_2^2+z^2=1$, а функция λ запишется как

$$\lambda = rac{x_1^2 - x_2^2}{\sqrt{(x_1^2 - x_2^2)^2 + 4z^2}}$$

Такой вид λ подсказывает следующий путь для построения n-мерного псевдориманова пространства с двумя полюсами.

Исходим по-прежнему из пары функций $F(\rho)$, $F(\rho)$ со свойствами, перечисленными в начале п. 3°. Далее, на сфере $S^{(n)}$

$$x_1^2 + x_2^2 + \ldots + x_n^2 + z^2 = 1$$

задаем функцию

$$\lambda = rac{-x_1^2 + x_2^2 + \ldots + x_n^2}{\sqrt{(-x_1^2 + x_2^2 + \ldots + x_n^2)^2 + 4z^2}} \; ,$$

определенную на всем пространстве $S^{(n)}$, за исключением двух сфер $S^{(n-2)}$: $z=0, -x_1^2+x_2^2+\ldots+x_n^2=0$ (или, что эквивалентно, z=0 и $x_1^2={}^1/{}_2$). В области (связной), определенной на сфере $S^{(n)}$ неравенством $-x_1^2+x_2^2+\ldots+x_n^2>0$, введем координату ρ и новую метрику ds^2 посредством формул

$$F(\rho) = \lambda, \quad ds^2 = -d\rho^2 + F(\rho) \, d\sigma^2(\varphi_1, \dots, \varphi_{n-1}), \tag{7}$$

где $d\sigma^2$ — положительно определенная метрика постоянной кривизны —1; в каждой из двух областей — $x_i^2 + x_2^2 + \ldots + x_n^2 < 0$ определим ρ и ds^2 посредством

 $F(\rho) = \lambda, \quad ds^2 = d\rho^2 + F(\rho) \ d\theta^2(\varphi_1, \dots, \varphi_{n-1}), \tag{8}$

где $d\theta^2$ — псевдориманова метрика индекса n-1, также имеющая постоянную кривизну -1. Можно показать, что на сфере $S^{(n)}$, из которой исключены две указанные выше сферы $S^{(n-2)}$, существует аналитическая псевдориманова метрика с двумя полюсами $(0,\ldots,0,1)$ и $(0,\ldots,0,-1)$, которая в полярных координатах имеет вид (7), (8). Индекс этой метрики равен 1.

Московский государственный заочный педагогический институт

Поступило · 8 XII 1972: