VIK 519.21

MATEMATIKA

В. В. АНИСИМОВ

ОБ ОСТАНОВКЕ СЛУЧАЙНОГО ПРОЦЕССА В МОМЕНТ ДОСТИЖЕНИЯ НЕКОТОРОГО УРОВНЯ

(Представлено академиком В. М. Глушковым 5 III 1973)

В ряде задач, связанных с изучением предельного поведения сумм случайных величин на полумарковском процессе, некоторых аддитивных бункционалов от случайных блужданий, возникают суперпозиции процессов такого вида, когда один процесс останавливается в момент достижения другим некоторого уровня. В данной работе указывается явный вид преобразования Лапласа характеристической функции такой суперпозиции для процессов с независимыми приращениями и марковских процессов.

Рассмотрим процесс $\bar{z}(t) = \{\bar{\xi}(t), y(t)\}, t \ge 0$. Скажем, что $\bar{z}(t)$ удовлетворяет условию A, если $\bar{z}(t) = (-\infty, \infty)^{\tau} \times [0, \infty], t \ge 0$, и $\bar{z}(t) = (-\infty, \infty)^{\tau} \times [0, \infty]$, и $\bar{z}(t) = (-\infty, \infty)^{\tau}$

$$y(t) \longrightarrow \infty$$
 при $t \to \infty$. Положим

$$\mu(t) = \inf\{s: s \ge 0, y(s) \ge t\}, t \ge 0.$$

Нас будут интересовать распределения величин $\xi^-(t) = \bar{\xi}(\mu(t)-)$ и $\xi^+(t) = \xi(\mu(t))$ (под f(t-) понимается $\lim_{x\to t-0} f(x)$).

Обозначим

$$\psi(\bar{\lambda}_1, \bar{\lambda}_2, s) = \int_{0}^{\infty} e^{-st} M \exp\{i[(\bar{\lambda}_1, \bar{\xi}^-(t)) + (\bar{\lambda}_2, \bar{\xi}^+(t))]\} dt, \quad \text{Re } s > 0,$$

где $\bar{\lambda}_1,\ \bar{\lambda}_2$ — произвольные векторы из $(-\infty,\ \infty)^r$ а $(\cdot,\ \cdot)$ — символ скалярного произведения. Имеет место

 $\overline{\Lambda}$ е м м а. Если $\overline{z}(t)$ удовлетворяет условию A, то

$$\psi(\bar{\lambda}_{1}, \bar{\lambda}_{2}, s) = \lim_{n \to \infty} \frac{1}{s} \sum_{k=0}^{\infty} M \exp\left\{i\left[\left(\bar{\lambda}_{1}, \overline{\xi}\left(\frac{k}{n}\right)\right) + \left(\bar{\lambda}_{2}, \overline{\xi}\left(\frac{k+1}{n}\right)\right)\right]\right\} \cdot \left(\exp\left\{-sy\left(\frac{k}{n}\right)\right\} - \exp\left\{-sy\left(\frac{k+1}{n}\right)\right\}\right). \tag{1}$$

Доказательство. Для любого $n \geqslant 1$ положим

$$\{\xi_n^-(t),\xi_n^+(t)\} = \left\{ \left\{ \overline{\xi} \left(\frac{k}{n}\right), \overline{\xi} \left(\frac{k+1}{n}\right) \right\}, \quad \text{если} \quad \frac{k}{n} < \mu(t) \leqslant \frac{k+1}{n}.$$

$$k = 0, 1, \dots$$

Тогда очевидно, что с вероятностью единица при $n \rightarrow \infty$

$$\{\xi_n^-(t), \xi_n^+(t)\} \rightarrow \{\overline{\xi}^-(t), \overline{\xi}^+(t)\},$$
 (2)

причем из монотонности y(t) следует, что процессы $\xi^-(t)$, $\xi^+(t)$ не имеют разрывов 2-го рода. Обозначим через $\varphi_n(\lambda_1, \lambda_2, t)$ и $\varphi(\lambda_1, \lambda_2, t)$ соответст-

венно характеристические функции совместных распределений векторов $\{\xi_n^-(t), \xi_n^+(t)\}$ и $\{\xi^-(t), \hat{\xi}^+(t)\}$. Из (2) следует, что $\phi_n(\bar{\lambda}_1, \bar{\lambda}_2, t) \rightarrow \phi(\bar{\lambda}_1, \bar{\lambda}_2, t)$ и $\phi(\bar{\lambda}_1, \bar{\lambda}_2, t)$ по t не имеет разрывов 2-го рода, откуда нетрудно получить, что

$$\psi(\bar{\lambda}_1,\bar{\lambda}_2,s) = \lim_{n\to\infty} \int_0^\infty e^{-st} \varphi_n(\bar{\lambda}_1,\bar{\lambda}_2,t) dt.$$

Но по формуле полной вероятности

$$\varphi_n(\bar{\lambda}_1, \bar{\lambda}_2, t) = \sum_{k=0}^{\infty} M \exp\left\{i\left[\left(\bar{\lambda}_1, \bar{\xi}\left(\frac{k}{n}\right)\right) + \left(\bar{\lambda}_2, \bar{\xi}\left(\frac{k+1}{n}\right)\right)\right]\right\} \chi\left[y\left(\frac{k}{n}\right) < t \leq y\left(\frac{k+1}{n}\right)\right],$$

откуда после несложных преобразований следует (1).

Из леммы для конкретных классов процессов нетрудно получить следующие результаты.

T е о р е м а 1. II усть $\bar{z}(t)$ — процесс с независимыми приращениями, удовлетворяющий условию A. Обозначим

$$f(\bar{\lambda}, s, t) = M \exp\{i(\bar{\lambda}, \bar{\xi}(t)) - sy(t)\}, \quad t \ge 0, \quad \text{Re } s \ge 0.$$

$$\psi(\bar{\lambda}_1, \bar{\lambda}_2, s) = -\frac{1}{s} \int_{s}^{\infty} \frac{f(\bar{\lambda}_1 + \bar{\lambda}_2, s, x) f(\bar{\lambda}_2, 0, x)}{f(\bar{\lambda}_2, s, x)} d_x \frac{f(\bar{\lambda}_2, s, x)}{f(\bar{\lambda}_2, 0, x)}.$$

В частности, если $\overline{z}(t)$ — однородный процесс и $\overline{z}(0) = \{\overline{0}, 0\}$, τ . е. $f(\overline{\lambda}, s, t) = \exp\{a(\overline{\lambda}, s)t\}$, где $a(\overline{\lambda}, s)$ — кумулянта процесса $\overline{z}(t)$, то

$$\psi(\bar{\lambda}_1, \bar{\lambda}_2, s) = \frac{1}{s} \frac{a(\bar{\lambda}_2, s) - a(\bar{\lambda}_2, 0)}{a(\bar{\lambda}_1 + \bar{\lambda}_2, s)}$$

Следствие. Пусть $\bar{z}(t)-o\partial нородный процесс с независимыми приращениями, удовлетворяющий условию A и <math>\bar{z}(0)=\{\bar{0},\,0\}$. Обозначим

$$au_{t}^{-}=t-y\left(\mu\left(t\right)-\right), \qquad au_{t}^{+}=y\left(\mu\left(t\right)\right)-t, \qquad \bar{\eta}_{t}=\bar{\zeta}^{+}\left(t\right)-\bar{\zeta}^{-}\left(t\right).$$

$$\int_{0}^{\infty} e^{-st} M \exp\{i(\bar{\lambda}, \bar{\eta}_{t}) - u_{1}\tau_{1}^{-} - u_{2}\tau_{t}^{+} - u_{3}\mu(t)\}dt =$$

$$= \frac{a(\bar{\lambda}, s + u_{1}) - a(\bar{\lambda}, u_{2})}{(s + u_{1} - u_{2})(a(\bar{0}, s) - u_{3})}, \quad \text{Re } u_{k} > 0, \quad k = 1, \dots, 3.$$

Эти результаты согласуются с $\binom{1}{2}$.

Пусть теперь $\bar{z}(t)$ — марковский процесс. Положим

$$F(a, b, \bar{\lambda}, s, t, u) = M[e^{i(\bar{\lambda}, \bar{\xi}(u)) - sy(u)}/\bar{z}(t) = \{\bar{a}, b\}],$$

$$\bar{a} = (-\infty, \infty)^{r}, \quad b = [0, \infty), \quad 0 \le t \le u, \quad \text{Re } s > 0.$$

Tе орем а 2. Если $\bar{z}(t)$ — марковский процесс, удовлетворяющий условию A, то

$$\psi(\bar{\lambda}_{1},\bar{\lambda}_{2},s) = \frac{1}{s} \int_{0}^{\infty} Me^{i(\bar{\lambda}_{1},\bar{\xi}(x))} \left[e^{-sy(x)} F(\bar{\xi}(x),y(x),x,x+dx,\bar{\lambda}_{2},0) - \frac{1}{s^{2}} \right] dx$$

$$-F(\overline{\xi}(x), y(x), x, x+dx, \overline{\lambda}_2, s)],$$

гое понимается

$$\int_{0}^{\infty} M\varphi(\xi(x), x, x+dx) = \lim_{n \to \infty} \sum_{k=0}^{\infty} M\varphi\left(\xi\left(\frac{k}{n}\right), \frac{k}{n}, \frac{k+1}{n}\right).$$

В частности, если

$$\lim_{h\to+0}\frac{1}{h}(F(a,b,\overline{\lambda},s,t,t+h)-e^{i(\overline{\lambda},a)-sb})=f(\overline{a},b,\overline{\lambda},s,t)$$

равномерно по $\{\bar{a},b,t\}$ из любой ограниченной области в $(-\infty,\infty)^{\tau}\times [0,\infty)\times [0,\infty)$, то

$$\psi(\bar{\lambda}_{1}, \bar{\lambda}_{2}, s) = -\frac{1}{s} \int_{0}^{\infty} Me^{i(\bar{\lambda}_{1}, \bar{\xi}(x))} [e^{-sy(x)}f(\bar{\xi}(x), y(x), \bar{\lambda}_{2}, 0, x) - e^{-sy(x)}f(\bar{\xi}(x), y(x), \bar{\lambda}_{2}, 0, x)]$$

$$-f(\overline{\xi}(x), y(x), \overline{\lambda}_2, s, x)]dx.$$

Как следствие отсюда также можно получить совместное распределение

недоскока, перескока и $\mu(t)$.

Рассмотрим теперь случай, когда остановка происходит в момент достижения некоторого случайного уровня. Пусть $\bar{z}(t) = \{\bar{\xi}(t), y(t)\}$ и $n(t), t \ge 0$,— случайные процессы такие, что процесс $\{\bar{\xi}(t), y(t) - n(t)\}$ удовлетворяет условию А и y(0) - n(0) = a < 0. Положим $\mu = \inf\{s: s \ge 0, y(s) \ge n(s)\}$. Нас будут интересовать распределения величин $\bar{\xi}^{\pm} = \bar{\xi}(\mu \pm)$. В этом случае вместо процесса y(t) в теоремах 1 и 2 достаточно рассмотреть процесс a+y(t)-n(t) и, если обозначить через $\phi(\lambda_1, \lambda_2, x)$ обращение преобразования Лапласа $\psi(\lambda_1, \lambda_2, s)$ по s, т. е.

$$\int_{0}^{\infty} e^{-sx} \varphi(\bar{\lambda}_{1}, \bar{\lambda}_{2}, x) dx = \psi(\bar{\lambda}_{1}, \bar{\lambda}_{2}, s),$$

то соответственно в предположениях теорем 1 или 2 относительно процесса $\{\xi(t), a+y(t)-n(t)\}$ получим, что

$$M \exp\{i[(\lambda_1, \xi^-) + (\lambda_2, \xi^+)]\} = \varphi(\overline{\lambda}_1, \overline{\lambda}_2, a-).$$

Если нас будут интересовать распределения недоскока и перескока через процесс n(t), то в качестве $\xi(t)$ достаточно взять процесс y(t)-n(t).

Киевский государственный университет им. Т. Г. Шевченко Поступило 20 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Д. В. Гусак, Теория вероятн. и ее примен., **14**, № 1, 15 (1969).
² Е. А. Печерский, Б. А. Рогозин, Там же, **14**, № 3, 431 (1969).