УДК 547.963.3+577.157.6

БИОХИМИЯ

Я. И. БУРЬЯНОВ, Г. П. ДЬЯЧЕНКО, Н. В. ЕРОШИНА, А. В. ИЛЬИН, О. Ф. КОРСУНСКИЙ

ХАРАКТЕР РАСПРЕДЕЛЕНИЯ 5-МЕТИЛЦИТОЗИНА В ПИРИМИДИНОВЫХ ИЗОПЛИТАХ РАЗЛИЧНЫХ ДНК, МЕТИЛИРОВАННЫХ В ГЕТЕРОЛОГИЧНОЙ ДНК-МЕТИЛАЗНОЙ РЕАКЦИИ

(Представлено академиком А. С. Спириным 16 V 1973)

Большинство исследований, связанных с энзиматическим метилированием ДНК на полинуклеотидном уровне, проведено на микроорганизмах. Одним из основных достижений этих работ явилось обнаружение видовой

и штаммовой специфичности бактериальных ДНК-метилаз (1).

Благодаря существованию четко выраженной специфичности ДНК-метилаз возможно проведение гетерологичных ДНК-метилазных реакций in vitro (¹,²). Сущность этого явления заключается в следующем. Если ДНК метилирована в клетке нормально, то гомологичные ДНК-метилазы не переносят на свою ДНК метильные группы in vitro, так как в таких ДНК уже отсутствуют свободные акцептирующие участки. Однако эти ДНК способны дополнительно акцептировать метильные группы в присутствии гетерологичных ферментов. Этот факт с достаточной убедительностью доказывает, что разные ДНК-метилазы «настроены» на специфические нуклеотидные последовательности. Анализ метилированных нуклеотидных участков ДНК имеет важное значение для выяснения механизма действия ДНК-метилаз и в решении проблемы узнавания на уровне взаимодействия «белок — нуклеиновая кислота». Кроме того, получение такой информации имеет значение п для понимания функциональной роли энзиматической модификации ДНК.

Мы обладаем пока немногочисленными данными относительно расположения метилированных азотистых оснований в полинуклеотидных последовательностях различных ДНК (³⁻⁶). Что касается локализации вновь включенных метилированных азотистых оснований в цепи ДНК, метилированной в гетерологичной ДНК-метилазной реакции, то такие данные

полностью отсутствуют.

В проведенной работе нами впервые получены данные по характеру распределения вновь включенного 5-метилцитозина (5-МЦ) в ДНК различного происхождения, которые были метилированы гетерологичной ДНК-метилазой Escherichia coli MRE-600.

В опыте использовали бесклеточный экстракт Е. coli MRE-600. Источником ДНК-метилазной активности служил супернатант 165 000 g, полу-

ченный путем дифференциального центрифугирования (7).

В гетерологичной ДНК-метилазной реакции участвовали ДНК E. coli B, Pseudomonas fluorescens и зобной железы теленка. Энзиматическое метилирование ДНК проводили в реакционной среде следующего состава (в μ молях): трис-HCl, pH 8,0, 40; MgCl₂ 2; 2-меркаптоэтанол 4; S-адено-знл-L-метионин (метил-С¹⁴) (уд. акт. 47 μ C/ μ моль) («Amersham», Англия) 0,01; ДНК 0,3 (в пересчете на нуклеотиды); РНКаза 4 μ г; белок бесклеточного экстракта 1 мг; объем 1 мл. Реакцию проводили при 37° в течение 40 мин. Предварительными опытами установлено, что за это время происходит насыщение различных ДНК метильными группами. Реакцию пре-

кращали добавлением равного объема хлороформа и далее ДНК выделяли

по методу Мармура (8).

ДНК подвергали по методу Бартона деградации до пиримилиновых последовательностей в 66% муравьиной кислоте, содержащей 2% дифениламин (⁸). Пиримидиновые изоплиты делили на ДЭАЭ-сефадексе А-25 в 0.01 М натрийацетатном буфере, рН 5.65 в линейном градиенте хлористого натрия (0-0.35 M) в присутствии 5 M мочевины. Так как в результате ДНК-метилазной реакции радиоактивность обнаруживали только в минорных метилированных основаниях, то о количественном содержании 5-МП в изоплитах судили по радиоактивности, связанной с включением С14Н3-групп S-аденозилметионина в 5-метилцитозин. Для этого выделенные изотопы обессоливали (10), высушивали и измеряли радиоактивность на сцинтилляционном спектрометре SL-30, «Intertechnique» (Франция) в сцинтилляционном растворе в толуоле. Для определения минорного нуклеотидного состава и распределения 5-МЦ в ДНК Е. coli MRE-600 клетки раздельно выращивали в присутствии 8-С14-аденина (уд. акт. 55 мС/г) и $2-C^{14}$ -оротовой кислоты (уд. акт. 60 мС/г) в концентрации $2~\mu\text{С}/\text{мл}$ на глюкозо-минеральной среде.

Пиримидиновые изоплиты после обессоливания гидролизовали в 57% $\rm HClO_4$ (1 час, 100°). К гидролизату ДНК добавляли синтетические препараты 5-метилцитозина и 6-метиламинопурина, а к гидролизатам пиримидиновых изоплит — 5-метилцитозин. Бумажную хроматографию в системах n-бутанол — вода — 25% аммиак (60:10:0,1), абсолютный метанол — концентрированная $\rm HCl$ — вода (70:20:10), n-бутанол — вода — 98% муравьиная кислота (77:13:10) использовали для определения радиоактивности в зонах различных азотистых оснований. Зоны 5-МЦ и МА вырезали,

Таблица 1
Частота встречаемости 5-метилцитозина в ппрмидиновых изоплитах различных ДНК (в % от всего 5-МЦ)

днк	Изоплиты						
	1	2	3	4	5	6	>6
ДНК E. coli B ДНК Ps. fluorescens ДНК тимуса теленка ДНК E. coli MRE-600 (метилирова- ние in vivo)	1,50 1,16 0,85 2,68	87,75 84,30 26,16 44,60	6,31 9,15 37,25 27,54	2,32 2,78 15,50 12,48	1,33 1,12 6,46 5,75	0,59 0,89 6,43 2,74	0,84 0,58 5,85 4,10

элюировали на вытекание 0,01 *M* HCl, элюаты упаривали и многократно рехроматографировали в разных растворителях. После окончательной рехроматографии пятна азотистых оснований вырезали и измеряли радиоактивность на сцинтилляционном счетчике.

Участвующие в реакции ДНК имеют следующий нуклеотидный состав (в мол. %): E. coli В: ГЦ 52,2; MA 0,50; 5-МЦ 0; Ps. fluorescens: ГЦ 62; MA 0,15; 5-МЦ 0,21; зобной железы теленка: ГЦ 44; MA 0; 5-МЦ 1,5.

Таким образом, выбранные для экспериментов ДНК различались по нуклеотидному составу, а также по степени и характеру метилирования. В гетерологичной ДНК-метилазной реакции степень метилирования, выраженная в пМ СН₃-групп, включенных в 100 нМ ДНК, составляла для ДНК Е. coli В 7,4; Ps. fluorescens 20,0; зобной железы теленка 8,1. Данные по распределению 5-МЦ в пиримидиновых изоплитах указанных ДНК, метилированных ДНК-метилазой Е. coli МRE-600, представлены в табл. 1. Кроме того, в табл. 1 представлены данные по частоте встречаемости 5-МЦ в пиримидиновых изоплитах ДНК Е. coli MRE-600, метилированной в клетке.

Прежде всего, обращает на себя внимание сходство всех ДНК по незначительному метилированию «одиночного» цитозина. По чрезвычайно ма-

лой степени метилирования цитозина в последовательности Pur-Cyt-Pur ДНК-метилаза E. coli проявляет тот же характер специфичности действия в гетерологичной реакции, как и in vivo, и совершенно отличается от ДНК-метилаз животных ($^{3-6}$).

Как известно, в ДНК животных максимальное количество 5-МЦ (до 70% всего 5-МЦ) сосредоточено как раз в последовательности

Pur — Cyt — Pur, т. е. в фракции «одиночного» питозина.

Несмотря на различную акцепторную способность, ДНК Е. coli В и Ps. fluorescens обнаруживают значительнейшее сходство в распределении вновь включенного 5-МЦ по всем изоплитам. Поразительным фактором оказалось сосредоточение вновь включенного 5-МЦ во фракции пиримиди-

новых динуклеотидов (около 90% всего 5-МЦ).

ДНК вобной железы теленка, проявляя сходство с бактериальными ДНК в чрезвычайно малой степени метилирования «одиночного» цитозина, в то же время отличается от бактериальных ДНК по характеру метилирования олигопиримидиновых последовательностей. Так, например, в результате гетерологичного метилирования ДНК зобной железы теленка максимальное количество вновь включенного 5-МЦ оказывается во фракции тринуклеотидов, а не динуклеотидов, как это имеет место в бактериальных ДНК. В то же время характер распределения 5-МЦ в пиримидиновых олигонуклеотидах ДНК Е. coli MRE-600, метилированной гомологичной ДНК-метилазной системой в клетке, отличается от распределения 5-МЦ во всех

гетерологичных ЛНК, метилированных in vitro.

Следует обратить внимание на то, что все рассмотренные различия наблюдаются на уровне пиримидиновых олигонуклеотидов, а одиночный питозин всегла метилирован незначительно. Незначительное метилирование олиночного питозина во всех изученных ПНК, по-вилимому, указывает на то, что характер метилирования ДНК в гетерологичной ДНК-метилазной реакции в большей мере определяется ДНК-метилазой, чем ДНК. В то же время гетерологичные ДНК проявляют заметные особенности в картине метилирования одигопиримидиновых последовательностей и отличаются от модифицированной in vivo ДНК E. coli MRE-600. Исходя из вероятного сходства первичных структур ДНК E. coli MRE-600 и E. coli В и отсутствия 5-МП в ЛНК Е. coli В, следовало ожидать, что в гетерологичной ДНК-метилазной реакции характер метилирования цитозина в E. coli В окажется таким же, как и в ДНК Е. coli MRE-600. Опнако по частоте встречаемости вновь включенного 5-МП в пиримидиновые изоплиты ЛНК E. coli В отличается от ДНК E. coli MRE-600. Вероятно, в бесклеточном бактериальном экстракте присутствует несколько ДНК-метилаз, модифицирующих одно азотистое основание в различных нуклеотидных последовательностях, причем in vitro координированное действие этих ферментов нарушено. Этим можно объяснить отличия в характере метилирования олигопиримидиновых последовательностей всех гетерологичных и в первую очередь ДНК Е. coli В, от метилирования гомологичной ДНК E. coli MRE-600 in vivo.

Авторы выражают искреннюю благодарность академику А. С. Спирину за полезные советы и замечания.

Институт биохимии и физиологии микроорганизмов Академии наук СССР Пущино-на-Оке Поступило 3 V 1973