б. ф. ванюшин, в. н. данилевич, а. м. лысенко РАСПРЕДЕЛЕНИЕ 5-МЕТИЛЦИТОЗИНА В ДНК ФАГА ДД7

(Представлено академиком А. С. Спириным 29 III 1973)

В ДНК фага ДД7 в качестве минорных оснований нами выявлены 5-метилцитозин (МС) и N^6 -метиладенин (МА) (¹). Содержание МС в ДНК этого фага вдвое меньше, чем в ДНК хозяина Esherichia coli С и составляет 0,13 мол.% (¹). МС обнаружен также в ДНК фагов λ (²) и φ X174 (³). МС возникает в ДНК в результате избирательного метилирования определенных немногочисленных остатков цитозина специфическими ДНК-метилазами. Недавно было показано, что это метилирование ДНК в клетках Е. coli может быть связано с хозяйской модификацией фаговой ДНК, контролируемой определенными плазмидами (¹). Однако модификация цитозиновых остатков в ДНК, по-видимому, имеет полифункциональное значение, и ее роль еще не совсем ясна. О характере распределения (локализации) МС в фаговых ДНК до сих пор практически ничего неизвестно.

В настоящей работе изучено содержание МС в разных по длине и составу пиримидиновых блоках и предпринята попытка однозначно установить локализацию этого минорного основания в некоторых пиримидиновых

фрагментах, выделенных из ДНК фага ДД7.

Фаг ДД7 выращивали, как и ранее (5), на клетках штамма E. coli C (мет-) в присутствии (метил- H^3)-метионина (1,0 μ C/мл «Amersham»). После удаления бактериальных клеток центрифугированием из фаголизатов выделяли и очищали с помощью хроматографии на волокнистой ТЭАЭ-целлюлозе фаг ДД7 (6). Из этих препаратов фага по методу Мармура (7) выделяли высокомолекулярную ДНК, которая содержала радиоактивность в МА и МС. Эту ДНК гидролизовали до пиримидиновых последовательностей по методу Бартона (8). Пиримидиновые фрагменты (Py_nP_{n+1}) разделяли по длине и составу с помощью разработанного нами метода жидкостной хроматографии олигодезоксирибонуклеотидов ДЭАЭ-сефадексе (A-25, «Pharmacia») (9). Путем хроматографии при рН 6,0 пиримидиновые фрагменты гидролизата ДНК разделяли по длине на отдельные изоплиты *, а затем полученные изоплиты (моно-, ди-, трии тетрануклеотиды) разделяли при рН 3,0 на фракции, различающиеся по составу. Количество более длинных олигонуклеотидов $(n \ge 5)$ в фаговой ДНК относительно невелико, и радиоактивность их довольно низка, поэтому такие пиримидиновые блоки по составу не разделяли и радиоактивность определяли только в изоплитах. Выделенные пиримидиновые олигонуклеотиды обессоливали и измеряли их радиоактивность на сцинтилляционных счетчиках «Mark 1» или «Mark 2» («Nuclear Chicago») с эффективностью счета для трития не менее 30%. Суммарную радиоактивность всех пиримидиновых олигонуклеотидов принимали за 100% и рассчитывали процентное содержание активности, т. е. МС, в каждом изоплите. Аналогичным образом суммарную радиоактивность отдельных компонент того или иного изоплита принимали за 100% и рассчитывали по активности процентное содержание МС в разных по составу олигонуклеотидах данного изоплита.

^{*} Изоплит — смесь олигонуклеотидов с одинаковым количеством нуклеотидных остатков.

Ниже представлены результаты изучения распределения радиоактивности МС по пиримидиновым изоплитам.

изоплиты	Количество МС,% от всего МС в ДНК
I	$0,98\pm0,37$
II	$36,52 \pm 0,38$
III	37,80+0,30
lV	$12,01 \pm 0,27$
V	5,09+0,24
VI	$3,32 \pm 0.26$
≥ VII	$4,28\pm0,34$

Суммарная радиоктивность всех пиримидиновых изоплит в каждом отдельном определении составляла около 3000 имп/мин. Количество параллельных определений равно 6. Общее количество МС в ДНК фага ДД7

составляет 0,13 мол. % (1).

Прежде всего следует отметить, что в ДНК фага ДД7 МС в монопиримидиновой фракции практически отсутствует (радиоактивность всех нуклеотидов этой фракции составляет менее 1% от радиоактивности всего МС ДНК фага ДД7). Иными словами, в ДНК фага ДД7 МС не содержится в последовательности Ри—МС—Ри. Этим ДНК фага ДД7 сходна с ДНК клеток хозяина (10) и существенно отличается от ДНК высших растений и животных, у которых подавляющее количество МС (около 2/3) локали-

зовано именно в последовательности Ри-МС-Ри (11, 12).

В ЛНК фага ЛЛ7 подавляющее количество МС (около 70%) локализовано в пиримидиновых ди- и тринуклеотидных последовательностях. Содержание МС в тринуклеотидах несколько выше, чем в динуклеотидах. Поскольку общее количество тринуклеотидов (7,91 мол.%) в ДНК фага несколько меньше динуклеотидов (10,80 мол. $\frac{9}{10}$) ($\frac{13}{10}$), можно заключить, что частота встречаемости МС в тринуклеотидах заметно выше, чем в динуклеотидах. МС обнаружен также во всех более длинных выделенных пиримидиновых изоплитах, однако его количество в тетрануклеотидах примерно втрое меньше, чем в тринуклеотидах. Между тем, по общему количеству нуклеотилного материала три- и тетрануклеотилы различаются не так существенно (соответственно 7,9 и 5,7 мол. %) (13). Все эти факты указывают на то, что распределение МС по изоплитам в ДНК фага ДД7 не является хаотичным и имеет выраженный специфический характер. Это заключение еще более упрочилось в результате анализа распределения МС в разных по составу фракциях олигонуклеотидов, выделенных из некоторых изоплит (табл. 1). Так, например, при анализе пиримидиновых динуклеотидов оказалось, что практически вся радиоактивность этого изоплита принадлежит последовательности СС*. Во фракции состава СТ она составляет менее 2% от радиоактивности всех динуклеотидов. Не исключено, что эта «мизерная» радиоактивность может представлять собой остаточную следовую метку СС. Иными словами, в ДНК фага, как это справедливо и для ДНК E. coli (10), МС не содержится в последовательности СТ и ТС. Любопытно заметить, что единственный остаток МС в ЛНК фага фХ174 содержится именно в этой последовательности (СТ или TC) (3). Тем самым изученный нами фаг ДД7 резко отличается от фага ФХ174 не только по уровню, но и по специфичности метилирования ДНК, несмотря на то что эти фаги репродуцируются в клетках одного и того же хозяина (E. coli C). Так как практически вся радиоактивность динуклеотидов принадлежит фракции СС и составляет 35,8% от активности всех пиримидиновых олигонуклеотидов (табл. 1), в ДНК фага ДД7 по крайней мере около 1/3 всего МС локализовано в последовательности Ри-С-С-Ри.

Во фракции тринуклеотидов небольшая радиоактивность обнаружена в олигонуклеотиде С₃, однако подавляющее количество метки этого изопли-

^{*} С - цитовин, Т - тимин.

та (>94%) сосредоточено в олигонуклеотидах состава C_2T . В олигонуклеотидах состава CT_2 радиоактивности нет вообще. Таким образом, в ДНК фага ДД7, кроме отмеченной ранее последовательности СС, метилированный цитозин содержится в тринуклеотидах ССС, C_2T и отсутствует в CT_2 . К такому же выводу о распределении МС в пиримидиновых тринуклеотидах ДНК E. соli пришли ранее Доскочил и Шормова (10). Тем самым можно думать, что специфичность метилирования остатков цитозина в фаговой и хозяйской ДНК может быть одинаковой.

Таблица 1 Содержание 5-метилцитозина в пиримидиновых блоках разного состава из ДНК фага ДД7 ($\overline{X}\pm \sigma$)

		Содержание МС	
И зоплит	Состав олигонуклео-	% от МС данного изоплита	% от всего МС ДНК фага
II	$egin{array}{c} C_2 \ CT \ T_2 \end{array}$	$98,04\pm0,33$ $1,96\pm0,28$ Her	35,8 0,7
III	$\begin{array}{c} T_2 \\ C_3 \\ C_2 T \\ C_7 T \\ C T_2 \\ T_3 \end{array}$	5,96±0,51 94,04±0,37 Her Her	2,3 35,5
IV	C_4 C_3T C_2T_2 CT_3 T_4	4,82±0,47 41,43±0,42 53,75±0,38 HeT HeT	0,6 5,0 6,4

Примечание. Число параллельных определений равно 4.

При анализе тетрануклеотидов небольшое количество радиоактивного МС мы нашли во фракции C_4 , а основное количество МС (более 95% от всего МС тетрануклеотидов) найдено в фрагментах состава C_3 Т и C_2 Т (табл. 1). В олигонуклеотидах состава CT_3 МС не содержится. Все это означает, что метилирование ДНК фага ДД7 осуществляется в тех последовательностях, которые содержат по меньшей мере два остатка цитозина (C_2 , C_2 Т, но не CT_2 ; C_2 Т, C_3 , C_4 и др.). Исходя из анализа тринуклеотидов и, в особенности, динуклеотидов мы заключаем, что одной из обязательных метилируемых последовательностей в ДНК фага ДД7 является последовательность, в которой содержатся подряд два цитозиновых остатка, т. е. фрагмент СС. Однако остается еще неясным, где в этом динуклеотиде находится МС (возможны сочетания: МС — С, С — МС или МС — МС).

Выделенную фракцию олигонуклеотидов СС мы обработали фосфомоноэстеразой из Е. coli, получив соответственно динуклеозидмонофосфаты (NpN), и затем фосфодиэстеразой змеиного (гюрза) яда. Предварительно мы установили, что использованный препарат «пришитой» к ДЭАЭ-целлюлозе фосфомоноэстеразы * не обладал фосфодиэстеразной активностью, а препарат фосфодиэстеразы лишен фосфомоноэстеразной активности. После количественного расшепления фосфодиэстеразой пиримидиновых динуклеозидмонофосфатов (NpN) полученные нуклеотиды (pN) были отделены от нуклеозидов (N) с помощью хроматографии на бумаге, элюированы водой и определена их радиоактивность. Оказалось, что более 95% всей радиоактивности олигонуклеотида СС сосредоточено во фракции нуклеотидов (3000 имп/мин), а в нуклеозидной фракции (N) найдено менее 5% радиоактивности (140 имп/мин). Следовательно, практически вся

^{*} За любезное предоставление препарата «пришитой» фосфомоноэстеразы выражаем глубокую благодарность проф. Р. И. Салганику.

радиоактивность олигонуклеотида СС содержится в последовательности С — \mathbf{MC} .

Таким образом, нами установлено, что около $^{1}/_{3}$ всего МС ДНК фага ДД7 содержится в последовательности $(5') \dots Pu-C-MC-Pu \dots (3')$.

После обработки суммарной фракции пиримидиновых тринуклеотидов фосфомоно- и фосфодиэстеразой более 90% их радиоактивности высвобождается в виде нуклеотидов (pN). Это означает, что и в тринуклеотидах

МС, по-видимому, не содержится на 5'-конце.

Сопоставление полученных нами ранее данных по распределению МА (5) с распределением МС в ДНК фага ДД7 указывает на высокую специфичность и совершенно разный характер метилирования остатков цитозина и аденина. Так, в этой ДНК МА может находиться в монопуриновой последовательности Ру—МА—Ру, а в аналогичной монопиримидиновой последовательности Ри—МС—Ри метилирования цитозина не происходит, и весь МС сосредоточен только в полипиримидиновых блоках. МА содержится на 5'-концах полипуриновых блоков (5, 14), а МС в качестве 5'-концевого нуклеотида в полипиримидиновых блоках не найден. Однако несмотря на эти различия все же обязательным соседом МС и МА слева является пиримидин.

По-видимому, метилазы, модифицирующие ДНК в клетках Е. coli по остаткам цитозина, так же как и по остаткам аденина (5, 14), узнают такую последовательность, которая включает в себя метилируемое основа-

ние и распространяется слева от него.

Московский государственный университет им. М. В. Ломоносова

Поступило 40 III 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ I. I. Nikolskaya, Z. G. Tkatcheva et al., Biochim. et biophys. acta, 155, 626 (1968). ² N. Ledinko, J. Mol. Biol., 9, 834 (1964). ³ A. Razin, J. W. Sedat, R. L. Sinsheimer, J. Mol. Biol., 53, 251 (1970). ⁴ S. Hattman, J. Virology, 10, 356 (1972). ⁵ Б. Ф. Ванюшин, Г. В. Боярских и др., ДАН 201, 234 (1971). ⁶ Т. И. Тихоненко, И. Г. Чирикадзе и др., Вопр. вирусол., 1, 34 (1966). ⁷ J. Marmur, J. Mol. Biol., 3, 208 (1961). ⁸ K. Burton, Biochem. J., 77, 547 (1960). ⁹ А. Л. Мазин, Б. Ф. Ванюшин, Биохимия, 32, 377 (1967). ¹⁰ J. Doskocil, Z. Sormova, Coll. Czechoslov. Chem. Commun., 30, 2445 (1965). ¹¹ Б. Ф. Ванюшин, Л. В. Машарина, А. Н. Белозерский, ДАН 147, 958 (1962). ¹² J. Doskocil, F. Sorm, Biochim. et biophys. acta, 55, 953 (1962). ¹³ Б. Ф. Ванюшин, Г. В. Боярских идр., ДАН, 195, 217 (1970). ¹⁴ В. F. Vanyushin, Y. I. Buryanov, A. N. Belozersky, Nature, New Biology, 230, 25 (1971).