УДК 548.736

КРИСТАЛЛОГРАФИЯ

Е. Л. БЕЛОКОНЕВА, П. А. САНДОМИРСКИЙ, М. А. СИМОНОВ, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КАДМИЕВОГО ПЕКТОЛИТА NaHCd₂ [Si₃O₉]

Объект нашего исследования — кристаллы синтетического Na, Cd-силиката, условно названные фазой P, выделены в лаборатории гидротермального синтеза Института Кристаллографии AH СССР Б. Н. Литвиным \mathbf{v} О. К. Мельниковым среди продуктов кристаллизации в системе $\mathrm{Na_2O-CdO-SiO_2-H_2O}$ (¹) при малых концентрациях щелочи (6—12 вес.%).

Сопоставление межплоскостных расстояний и параметров триклинной ячейки * $a=7.847\pm0.002$, $b=6.980\pm0.002$, $c=6.920\pm0.002$ Å, $\alpha=90^{\circ}24'\pm01'$, $\beta=94^{\circ}36'\pm01'$, $\gamma=102^{\circ}48'\pm01'$ с соответствующими данными для Са-силикатов (с учетом близости ионных радиусов Cd^{2+} (0,97 Å) и Ca^{2+} (0,99 Å)) позволило предположить структурную аналогию фазы P с минералом группы волластонита — пектолитом $\mathrm{NaHCd}_2[\mathrm{Si}_3\mathrm{O}_9]$. Результаты химического анализа: $\mathrm{Na}_2\mathrm{O}-6.5\%$, $\mathrm{CdO}-52.7\%$, $\mathrm{SiO}_2-38.8\%$, $\mathrm{H}_2\mathrm{O}-1.6\%$, $\Sigma=96.6\%$ удовлетворительно укладываются в формулу $\mathrm{NaHCd}_2\cdot [\mathrm{Si}_3\mathrm{O}_9]$, т. е. в пользу отмеченной аналогии. При удельном весе $d=4.0\ \mathrm{r/cm}^3$ в ячейке указанных размеров содержится Z=2 единицы $\mathrm{NaHCd}_2[\mathrm{Si}_3\mathrm{O}_9]$.

Основным экспериментальным материалом для структурной расшифровки были отражения с кфорограмм $h0l-h6l,\ hk0$ (Мо-излучение, 1100 независимых ненулевых отражений, $\max\sin\theta/\lambda=0.92$ Å-1). Их ин-

тенсивности оценивались по маркам почернения с шагом 2^h .

Таблица 1 Координаты атомов NaHCd₂[Si₃O₉]

АТОМЫ	x/a	y/b	z/c	B_j	Атомы	x/a	y/b	z/c	B_{j}
$\begin{array}{c} Cd_1 \\ Cd_2 \\ Na \\ Si_1 \\ Si_2 \\ Si_3 \end{array}$	0,138 ₈ 0,160 ₃ 0,446 0,211 0,219 0,453	0,409 ₉ 0,916 ₆ 0,746 0,402 0,954 0,737	$ \begin{array}{c} 0,855_2 \\ 0,866_6 \\ 0.654 \\ 0.336 \\ 0.346 \\ 0.140 \\ \end{array} $	0,77 0,69 1,06 1,05 1,03 0,64	O ₁ O ₂ O ₃ O ₄ O ₅ O ₆ O ₇ O ₈ O ₉	0.070 0.053 0,406 0.394 0,339 0.328 0.181 0,165 0,261	0,393 0,887 0,539 0,899 0,203 0,708 0,495 0,855 0,189	0,164 0,189 0,283 0,281 0,879 0,942 0,547 0,555 0,387	-0,20 1,08 1,18 1,27 1,56 1,32 0,61 1,47 1,33

Анализ патерсоновских проекций P(uw) и P(vw) показал достаточно вероятное центросимметричное расположение более тяжелых Cd и Si, что позволило на первых этапах вести распифровку структуры в рамках центросимметричной федоровской группы $C_{\downarrow}^{-1} = P\overline{1}$, которая и подтвердилась в дальнейшем ходе анализа (пьезоэффект у кристаллов фазы P не обнаружен). Атомы кислорода и натрия однозначно локализованы и дифференцированы на основе трехмерных распределений электронной плотности

^{*} Определены методом качания (камера РКОП, Мо-излучение) и уточнены на автоматическом дифрактометре P_1 «Синтекс».

Межатомпые расстояния в структуре NaHCd2[Si3O9], А

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si-тетраэдры					Сф-октаздр	Na-полиэдр					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O_7	1,68 1,65	O ₄ O ₈	1,60 1,65	O ₄ O ₅	1,65 1,61	$\begin{array}{c} O_{1}{}'\\ O_{2}{}'\\ O_{5}\\ O_{6} \end{array}$	2,39 2,25 2,33 2,34	$ \begin{array}{c} O_2 \\ O_2' \\ O_5 \\ O_6 \end{array} $	2,39 2,44 2,17 2,21	O ₃ ' O ₄ O ₄ ' O ₆ O ₇ '	2,90 2,54 2,83 2,54 2,26 2,46 2,53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					6		$Cd_{i} - O$	2,30	$Cd_2 - O$	2,32	O ₉ '	2,38
$\begin{array}{ c c c c c c c c c }\hline O_5 & O_6 & 3,50 \\ O_5 & O_6 & 3,57 \\ O_7 & 3,42 \\ O_6 & O_7 & 3,11*** \\ \hline O & O & 3,25 \\ \hline \end{array} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} O_7 \\ O_9 \\ O_7 \\ O_9 \\ O_7 \\ O_9 \end{array} $	2,76 2,69 2,61 * 2,59 * 2,62	$ \begin{array}{c} O_8 \\ O_9 \\ O_4 - O_8 \\ O_9 \\ O_8 - O_9 \end{array} $	2,64 2,66 2,69 * 2,60 * 2,60	$\begin{array}{c c} O_5 \\ O_6 \\ O_4 - O_5 \\ O_6 \\ O_5 - O_6 \end{array}$	2,70 2,73 2,67 2,65 2,74	$\begin{array}{c} 0_{2}'\\ 0_{5}\\ 0_{6}\\ 0_{1}'-0_{2}'\\ 0_{7}\\ 0_{6} \end{array}$	3,07 ** 3,46 3,14 3,48 3,13 3,07 **	$\begin{array}{c c} O_2' \\ O_6 \\ O_8 \\ O_2 - O_2' \\ O_5 \\ O_6 \end{array}$	3,51 3,07 ** 3,06 3,21 ** 3,62 3,30	$\begin{array}{c} O_3 - O_3' \\ O_4 \\ O_9' \\ O_7 \\ O_3' - O_6 \\ O_7 \end{array}$	3,34 2,54 * 3,52 2,61 * 3,44 3,41 2,59 *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							$\begin{array}{ c c } O_5 - O_6 \\ O_7 \end{array}$	3,50 3,57 3,42	$O_5 - O_6$ O_8	3,34 3,47 3,28 3,15 ***	$O_4 - O_4'$ O_9' O_8 $O_4' - O_6$	2,59 * 3,47 3,57 2,69 * 3,55 3,59
							0-0	3,25	0-0	3,26	$O_6 - \frac{O_9}{O_7}$ O_8	2,60 * 3,11 *** 3,15 ** 2,54

 Π р и м е ч а и и е. Одной звездочкой отмечены Na-полиэдры и Si-тетраэдры, двумя — Cd- октаэдры ($O_1 - O_1'$ и $O_2 - O_2'$ — обшие ребра октаэдров $Cd_1 - Cd_1'$, $Cd_2 - Cd_2$, связанных центром инверсии), тремя — Cd-октаэдры и Na-полиэдры.

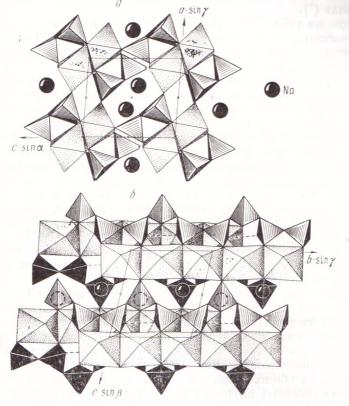


Рис. 1. Na $\mathrm{HCd}_2[\mathrm{Si}_3\mathrm{O}_9]$ (фаза Р). a — проекция вдоль псевдомоноклинной оси b; b — проекция yz, пунктиром отображена вероятная водородная связь

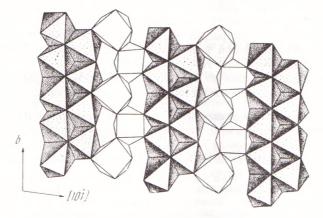


Рис. 2. NaHCd2[Si3O9] (фаза P). Параллельные грани (101) стенки из Cd-октаэдров и Na-полиэдров

 $\rho\left(xyz\right)$, построенных по вкладам найденных по проекциям атомов $\mathrm{Cd}_{\scriptscriptstyle 1-2}$, $\mathrm{Si}_{\scriptscriptstyle 1-3}$.

Уточнение скомпанованной структурной модели выполнено на основе трехмерного массива интенсивностей методом наименьших квадратов в изотроином приближении в рамках группы $P\overline{1}$. Заключительные координаты базисных атомов и индивидуальные температурные поправки приведены в табл. 1. Соответствующий фактор расходимости $R_{thil}=13.8\%$. Все

расчеты выполнены в Вычислительном центре МГУ на ЭВМ по програм-

ме «Кристалл» (2).

Как видно из табл. 2 межатомных расстояний, общие ребра Сd-октаэдров, Na-полиэдров и Si-тетраэдров укорочены (правило Полинга), а соответствующие «радиусы» катионов до кислородных вершин, общих для смежных полиэдров, увеличены.

Стержневой основой структуры $NaHCd_2(Si_3O_9)$, так же как и пектолита, можно считать двурядные ленты из Cd-октаэдров, вытянутые вдоль оси b (рис. 1) и объединяемые в бесконечные стенки (прошивающими их) знгзагообразными цепочками из Na-полиэдра (рис. 2). Соседние—вдоль оси b—стенки жестко сцементированы между собой вытянутыми вдоль той же оси b волластонитовыми метанепочками $[Si_2O_9]_\infty$ (рис. 1).

В фазе Р координационный полиэдр Na — это искаженный томсоновский куб, в котором Na имеет шесть ближайших соседей на расстояниях 2,26-2,54 Å и два удаленных на 2,83 и 2,90 Å. Из шести укороченных ребер Na-полиэдра (табл. 2) иять общие с Si-тетраэдрами, вдоль шестого — 2,54 Å — вероятна водородная связь, тем более что если H исключить, то на O_7 и O_8 баланс усилий будет нарушен $(^2/_6+^1/_6+1=+1^1/_2)$. Фиксация атома H хоропо согласуется с результатами Превитта $(^3)$, которому на основе презиционного экспериментального материала удалось более точно

локализовать атом водорода в структуре пектолита.

Из сопоставления разрешенной структуры со структурой волластонита $Ca_3[Si_3O_9]$ следует, что замена двухвалентного катиона на одновалентный примерно того же радиуса, приводит к перестройке структуры: трехрядные дискретные ленты из Ca-октаэдров в волластоните объединяются в бескопечные стенки, в которых чередуются только двойные ленты Cd-октаэдров и ординарные цепочки Na-полиэдров. Последние объединены центрами инверсии на общих ребрах, и на рис. 2 хорошо видны позиции для двух сортов силикатных кирпичей $[SiO_4]$ и $[Si_2O_7]$, характерных для накладывающейся сверху волластонитовой цепочки $[Si_{2+4}O_9]_\infty$ (4).

Сопоставление разрешениой структуры фазы P с изученными ранее Na, Cd-силикатами — фазами K, L, R (5) в корреляции с условиями их образования (щелочность повышается от P- к R-фазе) подтверждает отмеченную ранее (6) тенденцию уменьшения координационного числа Na по мере увеличения концентрации NaOH в растворах, из которых кристаллизуются силикаты; от 8-ной в P-фазе через смешанную 8-ную и 6-ную

в K-фазе к 5-ной в L-фазе и до тетраэдрической в R-фазе.

Авторы выражают большую благодарность Ю. К. Егорову-Тисменко за помощь при оформлении работы и обсуждение результатов.

Московский государственный университет им. М. В. Ломоносова

Поступило 12 VI 1973

НИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. А. Симонов, О. К. Мельников, В. Н. Литвии, Сборник Гидротермальный сиптез кристаллов, «Наука», 1968. ² А. Б. Товбис, Б. М. Щедрип, Комплекс программ для решения задач структурного анализа кристаллов, М., 1968. ³ С. Т. Ргеwitt, Zs. Kristallogr., 125, 298 (1967). ⁴ Н. В. Белов, Кристаллохимия силикатов с крупными катионами, Изд. АН СССР, 1961. ⁵ М. А. Симонов, Ю. К. Егоров-Тисменко, Н. В. Белов, ДАН, 175, № 1 (1967); 181, № 1 (1968); 179, № 6 (1968). ⁶ М. А. Симонов, Ю. К. Егоров-Тисменко, Н. В. Белов, Вести. Московск. унив., сер. геол. в. 6 (1971).