УДК 541.135.7

ФИЗИЧЕСКАЯ ХИМИЯ

В. Ю. КОНДРАШИН, В. В. МАЛЫГИН, А. Я. ШАТАЛОВ

О КИНЕТИЧЕСКИХ ПАРАМЕТРАХ ПРОЦЕССОВ ОКСИДИРОВАНИЯ МЕТАЛЛОВ ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ТОКА

(Представлено академиком Я. М. Колотыркиным 9 III 1973)

Активное растворение металлов под действием переменного тока рассматривалось в ряде работ (1-3). В то же время образование оксидных пленок при наложени переменного тока, получившее частичное распространение на практике, детально еще не обсуждалось. Существенное значение, очевидно, имеет вопрос о тех параметрах, какими определяется кинетика формирования оксидных пленок на металлах под действием переменного тока. Сама возможность протекания этого процесса определяется стабильностью оксидной пленки в катодном полупериоде, и в последующем мы станем исходить из предположения, что она является полной, т. е. катодный ток вовсе не расходуется на восстановление оксида, сформированного в анодном полупериоде. Согласно (4, 5), именно такой случай реализуется для тантала и циркония в ряде электролитов.

Нами определены основные кинетические параметры и количественно исследована их роль в кинетике переменно-точного оксидирования. Сущность эксперимента заключалась в измерении скорости оксидирования Та и Zr в $0.1\ N\ H_2SO_4$ в зависимости от плотности и частоты поляризующего тока. Использовался переменный ток прямоугольпой формы и обычный синусоидальный ток.

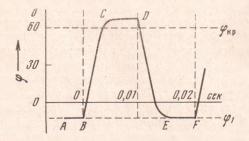


Рис. 1. Осциплограмма потенциала Та-электрода при поляризации прямоугольным симметричным током 10 ма/см² частоты 50 гд. Толщина оксида ~1000 Å

На рис. 1 представлена типичная осциллограмма колебаний потенциала Та-электрода при наложении симметричного прямоугольного тока. Толщина оксидной пленки равнялась 1000 Å и, согласно (4, 6), ее дальнейший рост возможен по достижении определенного критического потенциала

$$\varphi_{\text{\tiny KP}} = y / k,$$

где y — толщина пленки, Å; k=17 Å/в (для тантала). Этот потенциал отвечает такому состоянию, когда становится заметной ионная проводимость оксида, обеспечивающая прохождение фарадеевского тока в анодном полупериоде. На рис. 1 это соответствует участку CD. В катодном полупериоде после спада ниже уровня равновесного потенциала водородного электрода (участки AB и EF) весь фарадеевский заряд потребляется только процессом разряда водородных ионов при потенциале ϕ_i , поскольку оксидная пленка не восстанавливается.

В промежутке между φ_i и $\varphi_{\kappa p}$ Та-электрод ведет себя подобно идеально поляризуемому электроду (6). По этой причине участки заряжения и разряда электрода (BC и DE соответственно) выглядят почти прямыми и не имеют задержек, связанных с какими-либо электродными процессами. На этих участках через электрод протекает только нефарадеевский ток. Аналогичное поведение свойственно и Zr.

Исходя из такой модели поведения Та- и Zr-электродов, можно полагать, что скорость приращения оксидной пленки будет пропорциональна

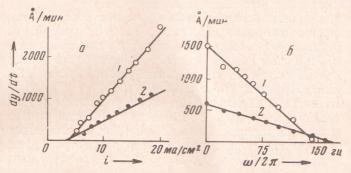


Рис. 2. Зависимость скорости оксидирования по уравнению (6) от плотности тока (ω / 2π = 50 гд) (a) п от частоты тока (i = 10 ма/см²) (δ); I — тантал, 2 — цирконий. Точки — значения, полученные экспериментально при оксидировании симметричным синусоидальным током

разности между полной средней плотностью переменного тока и значением ее нефарадеевской составляющей. Средняя плотность симметричного тока любой формы определяется выражением

$$i = \frac{\omega}{2\pi} \int_{0}^{2\pi/\omega} |i(t)| dt, \qquad (1)$$

 ω — циклическая частота колебания. Заряжение окисленного электрода анодным током от φ₁ до φир требует каждый раз нефарадеевского заряда

$$q_c = C(\varphi_{\kappa p} - \varphi_i), \qquad (2)$$

где C — электрическая емкость электрода. Для достаточно толстых пленок, когда $|\phi_{\kappa p}| \gg |\phi_1|$,

 $C = \sigma \varepsilon_0 \varepsilon / \gamma, \tag{3}$

где σ — коэффициент шероховатости электрода \approx 2,5, ϵ_0 — абсолютная диэлектрическая постоянная 8,85 · 10^{-14} ф/см, ϵ — диэлектрическая постоянная формирующегося оксида. С учетом (2) и (3) имеем

$$q_{c} = \sigma \varepsilon_{0} \varepsilon E_{\text{kp}}, \tag{4}$$

эдесь $E_{\kappa p} = \phi_{\kappa p} / y$ представляет собой критическую напряженность электрического поля в оксиде, при которой становится возможной миграция ионов. Среднее значение плотности нефарадеевского тока по определению (1) выразится из (4) как $\omega/\pi q_c$, т. е.

$$i_C = \frac{\sigma \omega \varepsilon_0 \varepsilon}{\pi} E_{\rm Rp}. \tag{5}$$

Существенно, что i_c не зависит от плотности тока i.

Средняя величина фарадеевской составляющей определится скалярным вычитанием i_c из i. С учетом закона Фарадея, из (5) получаем уравнение

скорости прироста толщины оксида во времени (независимо от формы тока)

$$\frac{dy}{dt} = \frac{r}{2\sigma} \left(i - \frac{\sigma \omega \epsilon_0 \epsilon}{\pi} E_{\rm KP} \right), \tag{6}$$

где r— электрохимический эквивалент анодного оксидирования. Кинетическими параметрами уравнения (6) являются величины i, ω , ε и $E_{\kappa p}$. Согласно этой формуле, с ростом плотности тока происходит линейное возрастание скорости оксидирования. При этом для протекания оксидирования требуется определенная величина тока $i_{\kappa p}$ (критическая плотность), зависящая от природы материала электрода и частоты поляризующего тока. Напротив, повышение частоты сопровождается линейным спадом скорости оксидирования, и в этом смысле можно говорить о критической частоте $\omega_{\kappa p}$, выше которой процесс оксидирования уже не протекает. Эти критические величины следуют из (6) при dy/dt = 0.

Результаты экспериментальной проверки уравнения (6) показаны на рис. 2. Как видно, в исследуемом диапазоне плотностей и частот поляризующего тока имеется хорошее согласие опытных и расчетных данных с поправкой на точность выбранных значений параметров уравнения; последние были заимствованы из (6). Полученные выводы утрачивают свою справедливость, если оксидные пленки способны к катодному восстановлению (Nb, W, Bi и др. (4, 5)). В таком случае необходимо еще учитывать обратимость электродных процессов, вызываемых фарадеевскими токами.

Воронежский государственный университет им. Ленинского комсомола

Поступило 8 III 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. Н. Михайловский, Г. Г. Лоповок, Н. Д. Томашов, Сборн. Коррозия металлов и сплавов, М., 1963, стр. 257. ² Ю. Н. Михайловский, Н. М. Струков, Н. Д. Томашов, там же, стр. 267. ³ Ю. О. Макогон, Автореф. кандидатской диссертации, Новочеркасск, 1971. ⁴ Л. Н. Закгейм, Электролитические конденсаторы, М.— Л., 1963, стр. 57. ⁵ В. Ю. Кондрашин, В. В. Малыгин, А. Я. Шаталов, Изв. высш. учебн. завед. Химия и хим. технол., 15, 1889 (1972). ⁶ Л. Юнг, Анодные оксидные пленки, Л., 1967.