УДК 538.3 *ФИЗИКА*

Я. Н. ФЕЛЬД

ДИФРАКЦИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА НЕЗАМКНУТЫХ ЭКРАНАХ

(Представлено академиком М. А. Леонтовичем 29 XI 1972)

Рассмотрим дифракцию первичной волны E^0 , H^0 на незамкнутом бесконечно тонком, идеально проводящем экране s с гладким контуром \mathscr{L} . Поле E^0 , H^0 возбуждает на экране s поверхностный ток K, создающий вторичное поле E, H. Последнее должно удовлетворять однородным уравнениям Максвелла вне $\bar{s} = s + \mathscr{L}$, граничному условию

$$\mathbf{E}_t = -\mathbf{E}_t^0 \quad \text{Ha} \quad s, \tag{1}$$

условиям Майкснера на контуре \mathscr{L} и условиям излучения на бесконечности. Эта задача имеет единственное решение. Построим его. Нам понадобится лемма Лоренца, которую удобно записать в виде

$$\int_{s} \mathbf{KE} \left\{ \mathbf{K}_{n}, s_{0} \right\} ds = \int_{s_{0}} \mathbf{K}_{n} \mathbf{E} \left\{ \mathbf{K}, s \right\} ds; \tag{2}$$

здесь K и K_n — плотности поверхностных токов, распределенных на s и s_0 соответственно, а, например, $E\{K, s\}$ — электрический вектор поля, возбуждаемого током K, распределенным на s. Под s_0 будем понимать поверхность, получающуюся в результате дополнения s до замкнутой при помощи геометрической поверхности Σ ($s_0 = s + \Sigma$).

Полагая, что в равенстве (2) \mathbf{K} есть искомый ток, а \mathbf{K}_n — один из семейства вспомогательных токов (которое мы определим ниже), перепи-

шем (2), учитывая (1), так:

$$\int_{s} KE\{K_{n}, s\} ds = -\int_{s} K_{n}E^{0} ds + \int_{\Sigma} K_{n}E\{K, s\} ds.$$
 (3)

Используя обозначения

$$\mathbf{I} = \begin{cases} \mathbf{K} & \text{ha } s, \\ \frac{1}{\rho_0} \mathbf{E}_t \{ \mathbf{K}, s \} & \text{ha } \Sigma, \end{cases} \quad \mathbf{F}_n = \begin{cases} \mathbf{E}_t \{ \mathbf{K}_n, s_0 \} & \text{ha } s, \\ -\rho_0 \mathbf{K}_n & \text{ha } \Sigma, \end{cases}$$
(4)

где ρ_0 — волновое сопротивление свободного пространства, придадим равенству (3) следующий вид:

$$\int_{s_0} \mathbf{I} \mathbf{F}_n \, ds = -\int_{s} \mathbf{K}_n \mathbf{E}^0 \, ds. \tag{5}$$

Это соотношение является основным в развиваемом методе.

Для нахождения при помощи (5) вектора I введем гильбертово пространство $L_{\rm R}^{\,2}(s_0)$, элементами которого являются вектор функции, заданные на s_0 и касательные к ней. Скалярное произведение и норму определим формулами

 $(\mathbf{A}, \mathbf{I}) = \int_{s} \mathbf{A} \, \overline{R} \mathbf{I} \, ds, \quad \|\mathbf{I}\| = \left(\int_{s} \mathbf{I} \, \overline{R} \mathbf{I} \, ds \right)^{1/s}; \tag{6}$

здесь R — линейный оператор, выбираемый так, чтобы выполнялись аксиомы гильбертова пространства и все элементы $L_R^2(s_0)$ удовлетворяли условиям Майкснера для тока при приближении к $\mathscr L$ со стороны s и электрического поля, при приближении со стороны Σ ; черта — знак комплексного

сопряжения.

Практически в качестве R удобно брать двумерный тензор второго ранга, имеющий (в ортогональной системе координат) диагональный вид с положительными на s и Σ компонентами. Если одна из координатных линий $X_1 = \text{const}$ совпадает с \mathscr{L} , то R_{11} должно стремиться к бесконечности как $\rho^{-1/2}$ (ρ — расстояние до \mathscr{L}), а R_{22} к нулю как $\rho^{1/2}$ при приближении к \mathscr{L} со стороны s; при приближении со стороны Σ R_{11} должно стремиться к нулю как $\rho^{1/2}$, а R_{22} оставаться конечным (см. ниже).

Обозначения (6) позволяют записать равенство (5) так:

$$(\mathbf{I}, R^{-1}\overline{\mathbf{F}}_n) = a_n, \quad a_n \equiv -\int_{s} \mathbf{K}_n \mathbf{E}^0 \, ds; \tag{7}$$

 R^{-1} — оператор, обратный оператору R ($RR^{-1}=1$), а a_n — известные числа.

Выберем в качестве \mathbf{K}_n , $n=0,\,1,\,2,\ldots$, семейство дважды непрерывно дифференцируемых * на s_0 векторных функций, полное относительно $L(s_0)$ ($L(s_0)$ — пространство суммируемых на s_0 векторных функций, тангенциальных к s_0 ; $L_{R^2}(s_0) \subset L(s_0)$). Такое семейство всегда существует. Легко видеть, что \mathbf{I} и $R^{-1}\overline{\mathbf{F}}_n$ включены в $L_{R^2}(s_0)$.

Введем еще подпространство $M(s_0)$, элементами которого являются вектор-функции $\mathbf{A} \in L_{\mathbb{R}^2}(s_0)$, удовлетворяющие следующим дополнительным требованиям:

1) $^{\mathsf{A}}$ имеют непрерывные вторые производные на s;

2) нормальная к $\hat{\mathscr{L}}$ компонента $\mathbf A$ стремится к нулю, при приближе-

нии к \mathscr{L} со стороны s, не слабее чем $\rho^{1/2}$.

 $M(s_0)$ всюду плотно в $L_R^{\ 2}(s_0)$, поэтому его замыкание $\overline{M}(s_0)$ совпадает с $L_R^{\ 2}(s_0)$. Покажем сначала, что семейство $R^{-1}\mathbf{F}_n,\ n=0,\ 1,\ 2,\ldots$, полно относительно $M(s_0)$, т. е. из условий

$$(\mathbf{A}, R^{-1}\overline{\mathbf{F}}_n) \equiv \int_{s_0} \mathbf{A}\mathbf{F}_n \, ds = 0, \quad n = 0, 1, 2, \dots,$$
 (8)

где $\mathbf{A} \in M(s_0)$, следует, что $\mathbf{A} = 0$ на s_0 .

Перепишем равенство (8), учитывая (4):

$$\int_{s} \mathbf{AE} \left\{ \mathbf{K}_{n}, s_{0} \right\} ds - \rho_{0} \int_{\Sigma} \mathbf{K}_{n} \mathbf{A} ds = 0,$$

или, используя лемму типа (2),

$$\int_{s_0} \mathbf{K}_n \mathbf{E} \{ \mathbf{A}, s \} \, ds - \rho_0 \int_{\Sigma} \mathbf{K}_n \mathbf{A} \, ds = 0.$$

Представляя первый интеграл в виде суммы интегралов по s и Σ и объединяя соответствующие члены, запишем последнее равенство так:

$$\int_{s_0} \mathbf{K}_n \mathbf{F} \, ds = 0, \quad n = 0, 1, 2, \dots,$$
 (9)

где

$$\mathbf{F} = \begin{cases} \mathbf{E}_t \{ \mathbf{A}, s \} & \text{Ha } s, \\ \mathbf{E}_t \{ \mathbf{A}, s \} - \rho_0 \mathbf{A} & \text{Ha } \Sigma. \end{cases}$$
 (10)

^{*} Это требование можно ослабить.

Поскольку $\mathbf{F} \in L(s_0)$, а семейство \mathbf{K}_n полно в $L(s_0)$, то из условий (9) следует, что $\mathbf{F} = 0$ (почти всюду) па s_0 . Отсюда, учитывая (10),

$$\mathbf{E}_t\{\mathbf{A}, s\} = 0$$
 ha s , $\rho_0 \mathbf{A} = \mathbf{E}_t\{\mathbf{A}, s\}$ ha Σ . (11)

Поле $\mathbf{E}\{\mathbf{A},s\}$, $\mathbf{H}\{\mathbf{A},s\}$ вследствие первого условня (11) и теоремы единственности обращается в нуль во всем пространстве. Так как ток \mathbf{A} равен скачку $\mathbf{H}_t\{\mathbf{A},s\}$ при переходе через s, то $\mathbf{A}=0$ на s; из второго условия (11) следует также, что $\mathbf{A}=0$ на Σ . Таким образом, $\mathbf{A}=0$ на s_0 и полнота в $M(s_0)$ доказана. Поскольку $\overline{M}(s_0)=L_{R}^{-2}(s_0)$, то вследствие непрерывности скалярного произведения $R^{-1}\overline{\mathbf{F}}_n$ полно также относительно $L_R^{-2}(s_0)$.

Дальнейший путь решения аналогичен используемому в методе

Энскога (1).

Прежде всего ортонормируя семейство $R^{-i}\overline{\mathbf{F}}_n$, приходим к функциям

$$\mathbf{u}_m = \sum_{n=0}^m a_n^{(m)} R^{-1} \overline{\mathbf{F}}_n, \quad m = 0, 1, 2, \dots,$$
 (12)

где числа $a_n^{(m)}$ находятся из условий $(\mathbf{u}_m, \mathbf{u}_n) = \delta_{mn}$ по известным формулам. Далее, умножая первое равенство (7) на $\overline{a_n^{(m)}}$ и суммируя результат по n от нуля до m, найдем

$$(\mathbf{I}, \mathbf{u}_m) = c_m, \quad c_m \equiv \sum_{n=0}^m a_n \overline{a_n^{(m)}}. \tag{13}$$

Таким образом, c_m — коэффициент Фурье вектор-функции I, и, следовательно,

$$I(q) = \sum_{n=0}^{\infty} c_n \mathbf{u}_n(q), \quad q \in s_0.$$
 (14)

Этот ряд сходится по норме $L_{R}^{2}(s_{0})$ и определяет ток K на s и E_{t} на Σ (см. (5)). Искомое вторичное поле определяется во всем пространстве рядом

$$\mathbf{E} \equiv \mathbf{E} \left\{ \mathbf{K}, s \right\} = \sum_{n=0}^{\infty} c_n \mathbf{U}_n \left(q \right); \tag{15}$$

здесь

$$\mathbf{U}_n(q) = \frac{1}{i4\pi\omega\epsilon}$$
 rot rot $\int \mathbf{u}_n(p) \frac{e^{-ik|p-q|}}{|p-q|} ds$.

Выражения для **H** мы не выписываем. Как и в $(^2)$, можно показать, что ряд (15) сходится равномерно в любой области, не пересекающейся с \bar{s} . Для улучшения сходимости ряда (14) (а значит, и (15)) желательно, чтобы каждый его член имел такие же особенности на \mathcal{L} , как и **I**. Это обеспе-

чивается указанным выше выбором оператора R.

Если вычисление $E\{K_n, s_0\}$, входящей во все расчетные формулы (см. (4)), не легче, чем $E\{K_n, s\}$, то метод следует упростить. Для этого нужно положить $K_n \equiv 0$ на Σ . При этом $E\{K_n, s_0\} \equiv E\{K_n, s\}$, интегралы по Σ исчезают и всюду следует заменить s_0 на s, I— на K и F_n — на $E_t\{K_n, s\}$. Функции $\mathbf{u}_n(q), q \in s$, получаются теперь в результате ортогонализации семейства $R^{-1}\overline{E_t\{K_n, s\}}$ на s, полнота которого в $L_R^2(s)$ есть простое следствие полноты $R^{-1}\overline{F}_n$ в $L_R^2(s_0)$. Таким образом, отпадает необходимость введения Σ (ср. с (2)).

Отметим еще, что основное равенство (5) может быть непосредственно использовано для сведения задачи к решению системы линейных уравнений, минуя ортогонализацию. Для этого достаточно подставить в (5) выражение для І в виде ряда

$$\mathrm{I} = \sum_{m=0}^{\infty} b_m \mathrm{A}_m, \quad \mathrm{A}_m \in L^2_R(s_0),$$

где \mathbf{A}_m — полное в $L_{\mathbb{R}^2}(s_0)$ семейство функций.

Тогда для нахождения постоянных b_m будем иметь систему

$$\sum_{m=0}^{\infty} Z_{nm} b_m = a_n, \quad n = 0, 1, 2, \ldots; \quad Z_{nm} \equiv \int_{s_0} \mathbf{F}_n \mathbf{A}_m \, ds.$$

Числа Z_{nm} и a_n (см. (7)) известны.

сла Z_{nm} и a_n (см. (7)) известны. Если выбор ${\bf A}_m$ произведен так, что последняя система хорошо обусловлена, то определение b_m на ∂BM не представляет большого труда.

> Поступило 14 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ф. Трикоми, Интегральные уравнения, ИЛ, 1960. ² Я. Н. Фельд, ДАН, 206, № 6 (1972).