УДК 553.43:553.067

ГЕОЛОГИЯ

Г. В. ХЕТАГУРОВ

ОБ УСЛОВИЯХ ОБРАЗОВАНИЯ КОЛЧЕДАННО-ПОЛИМЕТАЛЛИЧЕСКИХ МЕСТОРОЖДЕНИЙ БУРОНСКОГО РУДНОГО ПОЛЯ (ЦЕНТРАЛЬНЫЙ КАВКАЗ)

(Представлено академиком В. И. Смирновым 7 VI 1972)

Среди полиметаллических месторождений Центрального Кавказа по составу и строению выделяются месторождения Буронского рудного поля, расположенные в бассейне р. Ардон (Горная Осетия). В структурном отношении месторождения тяготеют к зоне Центрального поднятия Главного хребта Большого Кавказа, которая соответственно с юга и севера отделяется от Штулу-Харесской депрессии и подзоны Южного склона Бурон-Ларским и Адайком-Казбекским разрывами (1). В пределах рудного поля отмечаются руды двух формационных типов— колчеданно-полиметаллического и полиметаллического. Первые включают Буронское, Правобережное, Лабагомское, Сурххохское и Саухохское месторождения, вторые — Староцейское месторождение и ряд более мелких рудопроявлений, аналогичных Садонской группе.

Район отличается сложностью геологического строения и интенсивной дислоцированностью. Он слагается различными отложениями — от докембрийских до современных. Докембрийские породы, в которых локализованы месторождения Буронского рудного поля, представлены кристаллическими сланцами, кварцитами, гнейсами и амфиболитами, объединяемыми под названием одноименной свиты. Буронская свита обнажается в осевой части Бадской антиклинали в виде узкой, 2—3 км, полосы близширотного направления, протягиваясь на 12 км; с юга она ограничивается выходами палеозойских и мезозойских гранитоидов, с севера — осадочно-вулканогенными образованиями нижней юры с базальными конгломератами в основании. Значительно меньше распространены дайки и жилы порфиритов,

диабазов, лампрофиров и дацит-андезитов. В настоящее время у большинства кавказских геологов существует твердо установившееся мнение о докембрийском возрасте буронской свиты (2-4). Это также подтверждается данными определения абсолютного возраста З. В. Студениковой для района р. Марух (720 млн лет) и хр. Аркасар (не менее 520 млн лет). Установлено также участие многократных метаморфических процессов, приведших к глубокому изменению первичных осадочно-вулканогенных пород. Последние в начальный период (в допалеозойское время) подверглись воздействию регионального (прогрессивного) метаморфизма, когда исходные породы были преобразованы в роговообманковые, гранат-амфиболовые, биотит-гранатовые, биотит-мусковитовые и другие гнейсы и сланцы (5). В палеозое породы буронской свиты претерпели регрессивный метаморфизм (диафторез), в результате чего ряд неустойчивых в изменившихся термодинамических условиях минералов (гранат, биотит и др.) был замещен хлоритом, серицитом. Внедрение в палеозое интрузий гранитоидов Садонского типа и гранитов Главного хребта также оказало контактовое воздействие на метаморфизованную толщу.

Как уже отмечалось ранее, руды Буронского поля размещены в породах одноименной свиты и представлены линзующимися телами субширотного простирания. При этом морфология и пространственное положение рудных тел (за исключением Староцейского месторождения) определяются сланцеватостью вмещающих пород, так как линзы имеют ориентированность, согласную с породами (6). Из месторождений наиболее хорошо изучено Главное рудное тело Буронского месторождения. Оно имеет форму линзы и прослеживается по простиранию на 500 м, а по падению на 350 м при мощности до 30 м. В рудах преобладают пирит, пирротин, маг-

нетит, сфалерит, халькопирит; в заметно меньших количествах встречаются галенит, теннантит, арсенопирит, касситерит; минералогическую редкость представляют собой шеелит, ильменит, кобальтин, аргентит, бурнонит, станнин, ильвоит, полибазит, самородные мышьяк, висмут, серебро и золото. Нерудные минералы представлены кварцем, хлоритом, кальцитом, серицитом, биотитом, мусковитом, андалузитом, турмалином, эпидотом, гранатом, рутилом и др. (7-9).

том, гранатом, рутилом и др. (7-9). По содержанию наиболее распространенных минералов (пирита и пирротина) в рудах выделяются массивные существенно пиритовые и су-

Гор. шт. 7(1388м)
Гор. шт. 2(1361м)
Гор. шт. 3(1318м)
Гор. шт. 1(1292м)
Гор. шт. 0(1239м)

Рис. 1. Схема строения рудной залежи Буронского месторождения (по Н. К. Иванову). 1— сплошные пиритовые руды; 2— то же пирротиновые; 3— вкрапленные руды

щественно пирротиновые разности. При этом первые слагают центральные части рудных тел. Массивные (существенно пиритовые и пирротиновые) руды к краевым частям линз сменяются вкрапленными и прожилкововкрапленными типами (см. рис. 1).

Соотношение основных рудных минералов в различных типах руд Бу-

ронского месторождения (об.%) иллюстрируется табл. 1.

Таблица 1

Минерал	Типы руд						
	массивные пиритовые	массивные	вкрапленные и прожилко- вые				
Пирит	60	22	48				
Пирротин	8	62	27				
Магнетит	19	1	_				
Сфалерит	6	7	8				
Халькопирит	6	6	12				
Галенит	1	2	5				

Рудные минералы, в особенности пирит и пирротин, представлены несколькими разновидностями, различающимися по морфологическим особенностям, времени образования, ассоциирующим минералам и некоторым другим признакам.

Сфалерит, халькопирит, галенит и некоторые другие менее распространенные минералы в большинстве своем обладают аллотриоморфнозернистой формой выделений, служат цементом более ранних минералов, а также слагают различные прожилки в массивных и особенно— во вкраплен-

ных рудах.

Возраст месторождений, по А. Д. Масленникову, является третичным, по М. С. Бакланову (5) — среднепалеозойским, В. Ф. Бочкареву (6) — доюрским и т. д. В более поздних работах (4 , 11) место буронских месторождений в металлогенической схеме развития Кавказа определяется в доскладчатой стадии киммерийской эпохи.

По условиям образования месторождения относятся к среднетемпературным гидротермальным. При этом не исключается возможность участия скарновых процессов (5 , 9) и воздействие процессов динамо- и термометаморфизма.

Накопленный в последние годы материал, дополненный нашими исследованиями, позволяет с несколько иных позиций подойти к решению во-

проса генезиса руд Бурона.

В частности, при сопоставлении описываемых руд с другими колчеданными месторождениями Большого Кавказа (Уруп, Кизил-Дере, Филизчай и др.) напрашивается вывод о более древнем возрасте месторождений Буронского рудного поля. Исключительная приуроченность руд

Таблица 2

Схема металлогенического развития зоны Центрального поднятия Большого Кавказа в Горной Осетии (по стадиям развития геосинклиналей) *

	Допалеозойская эпоха (рСт — Pz) доскладчатскладчат и послескл.		Герцинская эпоха (S ₁ -T)			K иммерийская элоха $(J_1 - Cr_1)$		
	DOCKNADOUL	toknao vani. a nocheckii	JOCKHAOGAL	1 1	N HOCHECKHOL	- +	1.000.000.000	<i>послескла.</i> ↑
Магматиче- ские комп- лексы	амфибо- литы	гранито- и диори- тогнейсы	граниты садон- ского тица и главного хребта сарского и цей- ского типов		порфи- риты	грано- диориты теплин- ского типа	дайки диабазон и порфи- ритов	
Этапы форми- рования руд и метамор- физма	І осадоч- ный, оса- дочно- эксгаля- ционный	II регионального метаморфизма	III регрессивного (контактово- го) метаморфизма			Manual T		IV гидротер мальный
Типоморфные минералы	Гидро- окислы железа, FeS ₂ , Cu FeS ₂	Fe ₃ O ₄ , Fe ₂ O ₃ , Fe ₅ , Fe ₅ (моноклин.), SiO ₂ , гранат, графит	Fe ₃ O ₄ , FeS ₂ , CaWO ₄ , SnO ₂ , SiO ₂ , гранат, апатит					ZnS, PbS FeS ₂ , FeS ₂ (rekc., MOHOKH.) CuFeS ₂ , Bi, Ag, SiO ₂ , CaCO ₃
Температур- ный режим		>570°	300—500°			7		60—400°

^{*} Стрелки указывают преобладающее направление перемещений.

данной формации к отложениям докембрия, согласная со сланцеватостью вмещающих пород форма рудных тел, относительно наибольшая степень метаморфизованности и специфичность минерального и химического состава руд — все это является основой для отнесения колчеданно-полиметаллических месторождений Буронского рудного поля к сингенетичным с вмещающими породами докембрия образованиям. Месторождения формировались в несколько последовательных этапов, среди которых можно выделить осадочный или осадочно-эксгаляционный, метаморфический (под воздействием регионального и контактового метаморфизма) и гидротермальный этапы (см. табл. 2).

Первый этап во времени совпадает с доскладчатой стадией развития допалеозойской геосинклинали Большого Кавказа, когда происходило ин-

тенсивное накопление осадочных и осадочно-эффузивных толщ (12). Пропесс сопровождался накоплением в эвгеосинклинальных зонах сульфидов (возможно, гидроокислов) железа, в меньшей степени меди и цинка, со-

ставивших колчеданную основу руд.

Второй этап формирования руд связан с интенсивным развитием процессов метаморфизма, носившим региональный характер и проявившим себя в складчатую и послескладчатую стадии развития геосинклинали. Они привели к глубокому преобразованию пород и рудного материала, а также к переходу гидратированных соединений в безводные окислы гематит и особенно магнетит, который часто встречается не только в рупах. но и во вмещающих породах. В это же время была образована значительная часть метасоматического (моноклинного) пирротина - основы сплошных пирротиновых руд.

Существенные изменения в рудах также происходили при внедрении в метаморфизованную толщу гранитоидной магмы на протяжении герцинской металлогенической эпохи. С этим периодом (третий этап) связывается перекристаллизация, а местами скарнирование руд, что подтверждается наличием в последних касситерита, шеелита и других минералов, не характерных для других колчеданных месторождений Большого

Кавказа.

В четвертом этапе в предкелловейское время (киммерийская металлогеническая эпоха) колчеданные руды испытали активное воздействие гидротермальных растворов, которым, как известно, мы обязаны формированием наиболее интересных свиндово-цинковых месторождений Большого Кавказа (Садон, Згид, Архон, Холст и др.). Активные минералогические процессы, проявившие себя в постскладчатую стадию киммерийской металлогенической эпохи, способствовали оформлению месторождений Буронского рудного поля - преобразованию колчеданных в колчеданно-полиметаллические месторождения. Вместе с тем, они привели также образованию свинцово-цинковых месторождений Садонского примером которых служит близрасположенное Староцейское рождение.

Исследования мономинеральных фракций методами декрепитации, вакуумной термометрии и гомогенизации дали возможность выявить температурные интервалы, при которых отлагались руды и протекали процессы метаморфизма. Наиболее высокая температура (не менее 570°) была получена для минералов, извлеченных из пород метаморфической толщи (кварц, гранат и др.), что отвечает альмандин-амфиболовой фации регионального метаморфизма (13). При более низких температурах протекал процесс регрессивного (контактового) метаморфизма, который, по результатам исследования образцов жильного кварпа и мраморизованных известняков, укладывается в интервале $300-500^{\circ}$. Наконец, гидротермальные минералы отлагались при $60-400^{\circ}$, что соответствует температуре формирования руд Староцейского месторождения и близко к данным, полученным для месторождений Садонской группы (Згид, Садон, Архон, Холст).

Материалы по палеозойским и мезозойским колчеданным и колчеданно-полиметаллическим месторождениям Большого Кавказа группа, Филизчай, Кизил-Дере и др.) говорят о том, что по сравнению с Буронскими они менее метаморфизованы. По нашему мнению, месторождения Буронского рудного поля по условиям образования и возрасту наиболее близки к колчеданным месторождениям Карелии, Западного Тянь-Шаня, Западного Саяна и Бурятии, которые размещены в кристаллической толще докембрия или нижнего палеозоя $\binom{14}{4}$, 15).

Северо-Кавказский горно-металлургический институт г. Орджоникидзе

Поступило

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Д. Ажгирей, Тр. Унив. дружбы народов им. Патриса Лумумбы, 11, в. 3 (1968). ² Е. А. Снежко, Геология СССР, 9, М., 1968. ³ С. М. Тибилов, В. В. Авдонин, Е. В. Мартюхин, Геология и полезные ископаемые Северной Осетии, Орджоникидзе, 1969. ⁴ В. Б. Черницын, В. Л. Андрущук, Н. Ф. Рубцов, Металлогенические зоны Центрального и Северо-Западного Кавказа, М., 1971. ⁵ М. С. Баклаков, Тр. Северокавказск. горно-металлург. инст., в. 15, Орджоникидзе (1957). ⁶ В. Ф. Бочкарев, В. Ф. Корнева, Вопр. магматизма, метаморфизма и рудообразования, М., 1963. ⁷ А. П. Большаков, Изв. высш. учебн. завед., Цветная металлургия, № 1 (1959). ⁸ Л. Д. Гословская, Тр. Центр. н.-и. горноразв. инст., в. 55 (1963). ⁹ К. Каррара, Вестн. Московск. унив., № 2 (1966). ¹⁰ М. И. Абдулла, Природа метаморфизма, М., 1967. ¹¹ Г. А. Твалчрелидзе, Закономерности размещения полезных ископаемых, 7, М., 1964. ¹² В. Б. Черницын, Закономерности размещения полезных ископаемых, 8, М., 1967. ¹³ Ф. Д. Тернер, Эволюция метаморфических пород. М., 1951. ¹⁴ В. И. Смирнов, Генезис эндогенных рудных месторождений, М., 1968. ¹⁵ С. И. Рыбаков, Геол. рудн. месторожд., 9, № 4 (1969).