УДК 513.88+517.978

МАТЕМАТИКА

И. Я. ШНЕЙБЕРГ

О РАЗРЕШИМОСТИ ЛИНЕЙНЫХ УРАВНЕНИЙ В ИНТЕРПОЛЯЦИОННЫХ СЕМЕЙСТВАХ БАНАХОВЫХ ПРОСТРАНСТВ

(Представлено академиком Н. Н. Боголюбовым 2 І 1973)

Рассмотрим банаховы алгебры G_0 и G_1 , непрерывно вложенные в отделимое линейное топологическое пространство X. Будем предполагать, что единичные элементы в G_0 и G_1 совпадают: $e_{G_0} = e_{G_1} = e$. Обозначим через $\sigma_G(a)$, $\rho_G(a)$ соответственно спектр и резольвентное множество элемента a в алгебре G. Пусть $a \in G_0 \cap G_1$ и для всех $\lambda \in \rho_{G_0}(a) \cap \rho_{G_1}(a)$ имеет место равенство

$$(a - \lambda e)_{G_0}^{-1} = (a - \lambda e)_{G_1}^{-1}. \tag{1}$$

В работе (1) доказано, что в этом случае любая связная компонента множества $\sigma_{G_0}(a)$ имеет непустое пересечение с множеством $\sigma_{G_1}(a)$.

Пусть область \mathscr{D} с кусочно-гладкой границей Γ удовлетворяет условиям:

a) $\mathscr{D} \cap \sigma_{G_0}(a) \neq \emptyset$,

б) множество $\Gamma_i = \Gamma \cap \sigma_{G_0}(a)$ имеет на кривой Γ меру 0.

T е о р е м а 1. Если существует голоморфная и ограниченная в \mathscr{D} функция $\varphi(\lambda) \neq 0$ такая, что

$$\int_{\Gamma} |\varphi(\lambda)| \|(a - \lambda e)^{-1}\|_{G_0} d\lambda < \infty, \tag{2}$$

то $\overline{\mathcal{D}} \cap \sigma_{G_1}(a) \neq \emptyset$, где $\overline{\mathcal{D}}$ — замыкание \mathcal{D} .

Доказательство. Предположим, что $\overline{\mathcal{D}} \cap \sigma_{G_1}(a) = \emptyset$. В силу (2) существует несобственный интеграл

$$P_0 = \int_{\Gamma \setminus \Gamma_0} \varphi(\lambda) (a - \lambda e)_{G_0}^{-1} d\lambda.$$

Нетрудно показать, что $P_{\scriptscriptstyle 0} \neq 0$. С другой стороны, положим

$$P_1 = \int_{\Gamma \setminus \Gamma_1} \varphi(\lambda) (a - \lambda e)_{G_1}^{-1} d\lambda = \int_{\Gamma} \varphi(\lambda) (a - \lambda e)_{G_1}^{-1} d\lambda = 0.$$

Из условия (1) следует, что P_0 и P_1 можно представить в виде пределов в G_0 и G_1 соответственно равных интегральных сумм. Так как G_0 и G_1 вложены в отделимое пространство, то $P_0 = P_1 = 0$. Получаем противоречие.

Теорема доказана.

В работе (2) интеграл (2) по контуру, проходящему через спектр, использовался для доказательства отделимости спектра. Там, в частности, с помощью одного результата Левинсона даются условия на спектр и рост резольвенты, при которых существует контур Γ и функция $\phi(\lambda)$ такая, что интеграл (2) сходится.

Проводя аналогичные рассуждения, из теоремы 1 получаем

Следствие 1. Пусть пересечение некоторой области со спектром $\sigma_{G_0}(a)$ является открытой простой гладкой дугой Λ и элемент а удовлетворяет условию (1). Пусть, далее, в окрестности каждой точки $\mu \subseteq \Lambda$ справедливо неравенство

 $\|(a-\lambda e)^{-1}\|_{G_0} \leq M[\rho(\lambda,\Lambda)],$

где $\rho(\lambda,\Lambda)$ — расстояние от λ до Λ , $M(\rho)$ — невозрастающая функция от ρ , удовлетворяющая условию $\int\limits_0^t \ln \ln M(\rho) \ d\rho < \infty$ для некоторого $\epsilon > 0$. Тогда $\Lambda \subset \sigma_{G_{\epsilon}}(a)$.

Напомним, что два банахова пространства E_0 и E_1 , непрерывно вложенные в отделимое линейное топологическое пространство X, называются интерполяционной парой. По интерполяционной паре E_0 , E_1 строятся банаховы пространства $E_0 \cap E_1$ и $E_0 + E_1$ (см. (4)). Если $E_0 \cap E_1$ плотно в E_i , i=0,1, то банахова алгебра $\mathscr{L}(E_i)$ ограниченных операторов в E_i непрерывно вложена в банахово пространство операторов из $E_0 \cap E_1$ в $E_0 + E_1$ и к оператору A из $\mathscr{L}(E_0) \cap \mathscr{L}(E_1)$, удовлетворяющему условию (1), применима теорема 1. Заметим, что каждый оператор из $\mathscr{L}(E_0) \cap \mathscr{L}(E_1)$ естественно доопределяется по линейности на $E_0 + E_1$. При этом условие (1) эквивалентно однозначной разрешимости уравнения $(A - \lambda I)x = y$ в пространстве $E_0 + E_1$ для $\lambda \in \rho_{E_0}(A) \cap \rho_{E_1}(A)$. В случае непрерывно вложенных пространств $E_1 \subset E_0$ условие (1) выполняется автоматически.

Множество λ таких, что оператор $(A - \lambda I)$ не нётеров, назовем Φ -спектром оператора A и обозначим его через $\sigma_E^{\Phi}(A)$, дополнение к $\sigma_E^{\Phi}(A)$

обозначим через $\rho_E^{\Phi}(A)$.

Положим $G_0 = \mathcal{Z}(E_0) / \mathcal{K}(E_0)$ и $G_1 = \mathcal{Z}(E_1) / \mathcal{K}(E_1)$, где $\mathcal{K}(E_i)$ – идеал компактных операторов в пространстве E_i . Обозначим через π_i каноническое отображение $\mathcal{Z}(E_i)$ на G_i . Пользуясь тем, что $\sigma_{E_i}{}^{\Phi}(A) = \sigma_{G_i}(\pi_i A)$, получим утверждение, аналогичное теореме 1 для Φ -спектров оператора. Как показано в работе (3), в этом случае условие (1) эквивалентно следующему:

$$\chi_{E_0 \cap E_1}(A - \lambda I) = \chi_{E_0}(A - \lambda I) = \chi_{E_1}(A - \lambda I),$$

где $\chi_E(A)$ — индекс оператора A в пространстве E.

2. Пусть E_0 и E_1 (F_0 и F_1) — интерполяционные пары. Рассмотрим семейства банаховых пространств E_α (F_α), зависящих от $\alpha \in [0,1]$, причем при $0 < \alpha < 1$ пространства E_α (F_α) являются промежуточными между E_0 и E_1 (F_0 и F_1), т.е. $E_0 \cap E_1 \subset E_\alpha \subset E_0 + E_1$ ($F_0 \cap F_1 \subset F_\alpha \subset F_0 + F_1$) (знак \subset здесь и в дальнейшем означает непрерывное вложение). Будем говорить, что семейство E_α обладает интерполяционным свойством относительно F_α , если для всякого линейного оператора, действующего из $E_0 + E_1$ в $F_0 + F_1$, сужение которого на E_j является ограниченным оператором из E_j в F_j , j=0,1, сужение на пространство E_α дает ограниченный оператор из E_α в F_α , $0 < \alpha < 1$. В дальнейшем мы будем рассматривать семейства E_α , удовлетворяющие условию:

(I). Для любого интервала $[\varepsilon, 1-\varepsilon] \subset (0,1)$ семейство $E_{(1-\alpha)\varepsilon+\alpha(1-\varepsilon)}$ построено комплексным методом интерполяции (4) по пространствам E_{ε}

и $E_{1-\varepsilon}$.

Обозначим через $(E_0, E_1)_{\theta p}$ пространство средних $(^5)$, через $[E_0, E_1]_{\theta}$ — пространство, полученное из E_0, E_1 комплексным методом. Условие (I) выполняется, в частности, для аналитических шкал $(^6)$ и для семейств. $[E_0, E_1]_{\theta}$. В работах $(^7, ^8)$ даны достаточные условия для выполнения

$$[(E_0, E_1)_{\theta_1 p}, (E_0, E_1)_{\theta_2 p}]_{\alpha} = (E_0, E_1)_{(1-\alpha)\theta_1 + \alpha\theta_2 p}.$$

В этом случае семейство $(E_0, E_1)_{\theta p}$ также удовлетворяет условию (I).

Множество α таких, что оператор A действует из E_{α} в F_{α} , обозначим через Ω_A . Внутренность Ω_A обозначим через Ω_A . Пусть K_A — подмножество α из Ω_A , для которых уравнение Ax = y, где $x \in E_{\alpha}$, $y \in F_{\alpha}$, корректно разрешимо, т.е. $\inf_{x \neq 0} \frac{\|Ax\|_{F_{\alpha}}}{\|x\|_{E_{\alpha}}} > 0$. Если E_{α} обладает интерполяционным свойством относительно F_{α} , то Ω_A — связное подмножество [0, 1], однако K_A . может быть несвязно.

Tеорема 2. Если семейства E_{α} и F_{α} удовлетворяют условию (I), то

 $K_A \cap \Omega_A$ открыто.

Приведем набросок доказательства. Очевидно, достаточно рассмотреть случай, когда семейства E_{α} , F_{α} построены комплексным методом по пространствам E_0 и E_4 , F_0 и F_4 соответственно и $\Omega_A = [0, 1]$. Пусть $\alpha_0 \in K_A \cap (0,1)$. Для достаточно малых $r[\alpha_0 - r, \alpha_0 + r] \subset (0,1)$. Существует число $\gamma_{\alpha_0} > 0$ такое, что для всех $x \in E_{\alpha_0}$ из $\|x\|_{E_{\alpha_0}} = 1$ следует $\|Ax\|_{F_{\alpha}} > \gamma_{\alpha_0}$. Выберем число C, для которого $\|A\|_{E_{\alpha} \to F_{\alpha}} < C$, $\alpha \in [0, 1]$.

Без доказательства сформулируем следующее утверждение.

Лемма 1. Существуют числа t и δ такие, что ∂ ля любых $x \in E_0 \cap E_1$, $\alpha \in (\alpha_0 - r, \alpha_0 + r)$, для которых $\|x\|_{E_\alpha} = 1$, найдется голоморфная в обла $z\in Tu$ $\mathscr{D}=\{|z-lpha|<\delta\}\cap \{\operatorname{Re} z\in (lpha_0-r,\ lpha_0+r)\}$ функция x(z) со значениями в $E_0 \cap E_1$, для которой $t < \|x(z)\|_{E_{\mathrm{Re}}} < 2$ и $x(\alpha) = x$.

Положим $R=\min{(\delta,r)}$. Возьмем число $\alpha_1 \in (\alpha_0-R,\alpha_0+R)$ и элемент x_1 из $E_0 \cap E_1$ такой, что $\|x_1\|_{E_{\alpha_1}} = 1$. Пусть x(z) — функция из леммы 1 для элемента x_1 . Так как $\|Ax(\alpha_0)\|_{F_{\alpha_0}} > t\gamma_{\alpha_0}$, то найдется $y_0 \in F_{\alpha_0}$, для которого $\|y_0\|_{F_{\alpha_0}} = 1$ и $\|y_0(Ax(\alpha_0))\| > t\gamma_{\alpha_0}$. Из формулы для нормы в пространстве $F_{\alpha'}$ (см. (4)) следует, что существует голоморфная в $F_{0'}+F_{1'}$ функция y(z) такая, что $y(\alpha_0)=y_0$ и $\|y(z)\|_{F_{\mathrm{Re}\,z}}<2$. Рассмотрим функцию $\phi(z)=$ y(z) (Ax(z)). Функция $\varphi(z)$ голоморфна в области \mathcal{D} , $|\varphi(z)| < 4C$ и $|\varphi(\alpha_0)| > t\gamma_{\alpha_0}$. Из формулы Кошн $\varphi'(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(z)}{(z-z_0)^2} \, dz$ следует, что

$$|\varphi(\alpha_1) - \varphi(\alpha_0)| \leqslant \frac{4C |\alpha_1 - \alpha_0|}{R - |\alpha_1 - \alpha_0|}.$$
 (3)

Для достаточно малых $|lpha_1-lpha_0|$ величина $q=t\gamma_{lpha_0}-rac{4C\,|lpha_1-lpha_0|}{R-|lpha_1-lpha_0|}$ положительна. Из неравенства (3) получаем $|\varphi(\alpha_i)| \ge q$. Отсюда $||Ax_i||_{F_{\alpha_i}} \ge$ $\geqslant q/2 > 0$. Так как $E_0 \cap E_1$ плотно в E_{α_1} , то $\alpha_1 \in K_A$.

Следствие 2. Пусть E_{α} , F_{α} удовлетворяют условию (I) u, кроме того, семейство E_{α} интерполяционно относительно F_{α} , $0 \le \alpha \le 1$. Если $E_{0} \subseteq F_{0}$ $u E_1 \subset F_1$, то множество α из (0,1) таких, что E_α замкнуто в F_α , открыто.

Обозначим через \mathcal{F}_A множество α таких, что оператор A действует из E_{α} в F_{α} и является нётеровым. Если $\alpha \in \mathcal{F}_A$, то через $\chi_{\alpha}(A)$, $n_{\alpha}(A)$ и $d_{\alpha}(A)$ обозначим индекс, размерность нуль-пространства и дефект сужения оператора A соответственно на пространство E_{a} . В работе $(^{\circ})$ множество ${\mathscr F}_{A}$ описано для сингулярного интегрального оператора А с кусочно-непрерывными коэффициентами в пространствах L_p . При этом, если p_1 , p_2 принадлежат \mathcal{F}_A и $\chi_{p_1}(A) \neq \chi_{p_2}(A)$, то найдется p такое, что $p_1 и <math>p$ не принадлежит \mathcal{F}_A . Имеются примеры, когда $\chi_{\alpha}(A)$ меняется в связной компоненте ${\mathscr F}_{\scriptscriptstyle A}$, однако это изменение происходит в граничных точках ${\mathscr F}_{\scriptscriptstyle A}$.

 ${
m T}$ еорема 3. Множество ${\mathscr F}_{\scriptscriptstyle A}\cap \check{\Omega}_{\scriptscriptstyle A}$ открыто. Если $lpha_{\scriptscriptstyle 1}$ и $lpha_{\scriptscriptstyle 2}$ лежат в связной компоненте множества $\mathcal{F}_A \cap \mathring{\Omega}_A$, то $\chi_{\alpha_1}(A) = \chi_{\alpha_2}(A)$.

Следствие 3. Если $E_{\alpha_1} \subset E_{\alpha_1}$, $F_{\alpha_2} \subset F_{\alpha_1}$ при $\alpha_1 < \alpha_2$ и $[\alpha_1, \alpha_2] \subset \mathscr{F}_A$ П

 $\cap \mathring{\Omega}_A$, to $n_{\alpha_1}(A) = n_{\alpha_2}(A)$ if $d_{\alpha_1}(A) = d_{\alpha_1}(A)$.

Автор благодарен С. Г. Крейну, Е. М. Семенову за советы и интерес

Воронежский государственный университет им. Ленинского комсомола

Поступило 27 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 С. Halberg, A. Taylor, Pacific J. Math., 6, 283 (1956). ² Ю. И. Любич, В. И. Мацаев, Матем. сборн., 56, 433 (1962). ³ П. А. Кучмент, Тр. Н.-и. инст. матем. Воронежск. гос. унив., в. 3, 61 (1971). ⁴ А. П. Кальдерон, Сборн. пер. Математика, 9, 3, 56 (1965). ⁵ J. L. Lions, J. Peetre, Inst. Hautes Etudes Sci., Publ. Math., 19, 5 (1964). ⁸ С. Г. Крейн, Ю. И. Петунин, УМН, 21, № 2, 89 (1966). ⁷ P. Grisvard, J. Liouville, 45, 143 (1966). ⁸ J. L. Lions. C. R., 256, 855 (1963). ⁹ I. Ts. Gokhberg, N. J. Krupnik, Studia Math., 31, 347 (1968).