УДК 538.113+541.67

ХИМИЯ

## Ю. В. ЯБЛОКОВ, Л. В. МОСИНА, Г. А. ПОПОВИЧ, академик АН МССР А. В. АБЛОВ, К. МИРЕЛ

## НЕСКОЛЬКО ТИПОВ МАГНИТНЫХ ЦЕНТРОВ В КРИСТАЛЛАХ АДДУКТОВ 3,5-ДИНИТРОБЕНЗОАТА МЕДИ

Продолжая систематические исследования магнетизма и спектров э.п.р. карбоксилатов меди ( $^{4-3}$ ), мы столкнулись с рядом особенностей в свойствах аддуктов 3,5-динитробензоата Cu(II). Изучались мелкокристаллические образцы соединений состава (3,5-(NO<sub>2</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>COO)<sub>4</sub>Cu<sub>2</sub>·2L, где L = CH<sub>3</sub>OH(I); C<sub>2</sub>H<sub>5</sub>OH(II); (NH<sub>2</sub>)<sub>2</sub>CO(III); CH<sub>3</sub>CONH<sub>2</sub>(IV); n-C<sub>4</sub>H<sub>9</sub>OH(V) и (3,5-(NO<sub>2</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>COO)<sub>2</sub>CuL, где L = 2H<sub>2</sub>O(VI). Измерения э.п.р. (спектрометр фирмы Брукер,  $v \cong 9350$  Мгд) и статической магнитной восприимчивости  $\chi$  в интервале температур 77–300° К показали, что в зависимости от природы лигандов L свойства соединений существенно различаются. Оказалось, что только спектры образдов VI и V отвечают известным прототипам: соединение VI является обычным мономером, зависимость  $\chi$ (T)

Таблица 1 Параметры спектров э.п.р. аддуктов к 3,5-динитробензоату Си (II) (дентры с  $S={}^1/{}_2$ )

| Адденд L | g <sub>x</sub>                                                                                                       | gy                                                                              | gz                                        | $A$ , $\mathfrak d$             | В, э                                   |  |
|----------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|----------------------------------------|--|
|          | $\begin{array}{c c} 2,040 \\ 2,040 \\ 2,040 \\ 2,040 \\ 2,040 \\ g_{\perp} = 2,068 \\ g_{\perp} = 2,086 \end{array}$ | $2,075$ $2,075$ $2,075$ $2,075$ $2,075$ $2,075$ $2,314$ $g_{\parallel} = 2,338$ | 2,330<br>2,340<br>2,340<br>2,340<br>2,340 | 162<br>161<br>161<br>153<br>163 | ~20<br>~20<br>~20<br>~20<br>~20<br>~20 |  |

 $\Delta g_{\parallel} = \pm 0,002$   $\Delta A = \pm 3$   $\vartheta$ 

подчиняется закону Кюри — Вейсса; соединение V построено из двуядерных молекул типа моногидрата ацетата меди ( $^{4-6}$ ). Спектры э.п.р. остальных аддуктов оказались неожиданными. Рассмотрим их на примере аддукта метанола к 3,5-динитробензоату меди, который является типичным (рис. 1).

При комнатной температуре наблюдается (рис. 1a и 6) большое число достаточно интенсивных групп сигналов, из которых выделим семь, расположенных при следующих значениях постоянного магнитного поля H(9): I-370, 2-1080, 3-3000, 4-4500, 5-5530, 6-6100 и 7-6700. Из остальных сигналов выделим группу линий ( $g_{\rm cp} \simeq 2,16$ ;  $\delta H \simeq 1200$  э), положение которой совпадает с положением группы 3. Обозначим ее номером 8 (рис. 1a). Сигналы типа 1-8 присутствуют в спектрах всех соединений I-IV. При понижении температуры интенсивность сигналов 3 растет, интенсивность всех остальных сигналов понижается. Кроме того, при понижении температуры изменяется положение всех сигналов за исключением группы 3: линии 1 и 6, 2 и 7 смещаются в сторону слабых магнитных полей  $\sim$ на 150 и 330 э соответственно, а линия  $5\sim$ на 380 э; сигнал 4 сдвигается в сильные поля  $\sim$ на 130 э; группа 8 трансформируется явно в две линии, которые при понижении температуры сходятся к центру и сливаются с линиями 3.

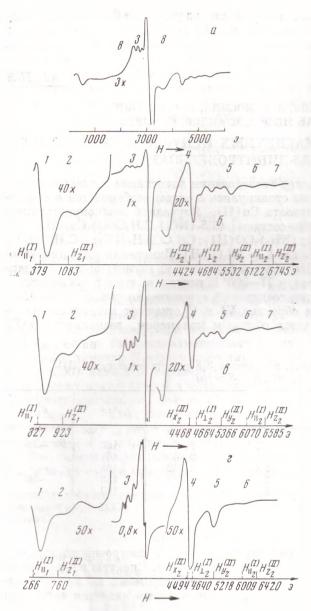
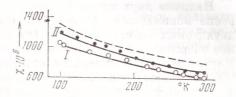



Рис. 1. Температурная зависимость спектров э.п.р. соединения І.  $a-T=300^\circ;~ \delta-270^\circ;~ \epsilon-190^\circ;~ \epsilon-140^\circ$  К. Приведено относительное усиление сигналов при регистрации спектра

Как видно из рис. 2, температурный ход BOCприимчивости соединений I и II не описывается ни уравнением Блини — Бауэрса, ни законом Кюри -Вейсса. Подчеркнем однако, что указанные вещества являются индивидуальными химическими соединениями, а не механической смесью нескольких продуктов. Это заключение подтверждается воспроизводимостью химических анализов и дифрактограмм, однотипностью габитуса кристаллов образцов, получающихся при повторных синтезах.

Рассмотрение опытных фактов начнем с группы линий 3 в спектрах э.п.р. соединений I-IV, показанных на рис. 1. Их положение, вид и температурная зависимость интенсивности однозначно свидетельству-OTP они обязаны невзаимодействующим парамагнитным центрам, содержащим один атом меди. Составляющие д-тензора и параметры сверхтонкой структуры приведены в табл. 1. Видно, что для всех соединений значения  $g_i$ , A и B практически совпадают. Мы определили концентрацию этих цент-(их можно называть фрагментамономерными ми), сравнивая интегральную интенсивность их сигэ.п.р. и сигнала от налов эталонного образца CuSO<sub>4</sub>. ·5H<sub>2</sub>O при температурах

77 и  $300^{\circ}$  К. Оказалось, что, отношение количества атомов меди мономерных фрагментов к остальным не зависит от температуры и равно  $\sim 1:4$  (точность определения количества центров не превышает 10-15%).


Интенсивность остальных сигналов, показанных на рис. 2, уменьшается при понижении температуры. Это означает, что парамагнитные состояния являются возбужденными. Анализ формы и положения сигналов показывает, что их мультиплетность равна трем, и позволяет выделить  $\binom{6}{7}$  два набора линий, которые описываются спиновым гамильтонианом

$$\hat{\mathcal{H}} = \{g\} \beta \hat{H} \hat{S} + D \left[ \hat{S}_{z}^{2} - \frac{1}{3} S \left( S + 1 \right) \right] + E \left( \hat{S}_{x}^{2} - \hat{S}_{y}^{2} \right)$$
 (1)

с S=1. Известно, что центры, парамагнетизм которых обусловлен возбужденными триплетными состояниями, возникают при образовании пар атомов меди, связанных обменными взаимодействиями вида  $\hat{JS}_1 \cdot \hat{S}_2$ . Отнесение сигналов к определенным переходам между триплетными подуровнями показано на рис. 2. Спектры, записанные при разных температурах, одинаково хорошо интерпретируются гамильтонианом (1), причем смещения сигналов отражают факт уменьшения расщеплений D для первого типа центров и D и E для второго. Значения параметров  $g_i$ , D и E для обоих типов центров в соединениях I-IV, а также для V, приведены в табл. 2.

Изложенное выше позволяет утверждать, что в аддуктах I-IV присутствуют в сравнимых концентрациях три типа центров, один из которых

Рис. 2. Температурная зависимость магнитной восприимчивости. Номера кривых соответствуют номерам соединений. Штриховая — теоретическая кривая  $\chi(T) = \alpha\chi_M + (1-\alpha)/2[\chi_D(J_1) + \chi_D(J_2)],$   $\alpha = 0.22, \quad J_1 = 300 \text{ cm}^{-1} \quad (T = 300^\circ \text{K}) \rightarrow 200 \text{ cm}^{-1} \quad (T = 100^\circ \text{K}) \rightarrow 400 \text{ cm}^{-1} \quad (T = 100^\circ \text{K})$ 



содержит изолированный атом меди, а два других включают обменносвязанные пары атомов меди. Из табл. 1 видно, что параметры двуядерных центров первого типа мало отличаются друг от друга и очень близки к соответствующим параметрам обычного для карбоксилатов меди димерного аддукта V. Поэтому естественнее всего считать, что они представляют собой типичные двуядерные молекулы ацетатного типа. Параметры центров второго типа также близки друг к другу, однако расщепления D в них заметно больше, а симметрия магнитного фрагмента — ниже, чем в известных двуядерных карбоксилатных комплексах меди. Интересно, что двуядерные центры второго типа возникают только в тех случаях, когда появляются центры, содержащие изолированные атомы меди.

Присутствие в спектрах э.п.р. двуядерных карбоксилатов меди слабых сигналов от фрагментов, содержащих один атом меди с S=1/2, впервые отмечалось в ( $^8$ ). Такие сигналы затем часто наблюдались в новых димерных карбоксилатах меди, причем концентрация мономерных фрагментов не превышала  $^1/_{100}$  от концентрации двуядерных молекул. В достаточно крупных кристаллах мономерные фрагменты, как правило, отсутствовали. На этом основании их формулировали как дефекты кристаллической структуры и не анализировали. (Такие слабые сигналы наблюдаются и в соединении V.) В обсуждаемых здесь аддуктах I-IV дело обстоит иначе. Как мы уже отмечали, один мономерный центр приходится приблизительно на

Таблица 2 Параметры спектров э.п.р. аддуктов к 3.5-динитробензоату Си (II)  $(T=300\ {\rm K},\ 77\ {\rm K})$ 

| Адденд L                                      | $g_{\perp}^{(\mathrm{I})}$ | g <sup>(I)</sup> ∥ | $D^{(I)}$ , $CM^{-1}$ | $g_{\mathbf{x}}^{(\mathrm{II})}$ | $g_{y}^{(II)}$   | $g_z^{(II)}$     | D(II),<br>cm-1     | $E^{(II)}$ , $CM^{-1}$ |
|-----------------------------------------------|----------------------------|--------------------|-----------------------|----------------------------------|------------------|------------------|--------------------|------------------------|
|                                               |                            |                    |                       |                                  | 1000             |                  |                    |                        |
| І. СН₃ОН                                      | 2,081                      | 2,325              | 0,353                 | 2,068                            | 2,071            | 2,367            | 0,434              | 0,029                  |
| II. C <sub>2</sub> H <sub>5</sub> OH          | 2,081 * 2,081              | 2,325 * 2,330      | 0,337 * 0,348         | 2,072 * 2,067                    | 2,074 * 2,070    | 2,367 * 2,360    | 0,396 *  <br>0,444 | 0,017 * 0.030          |
|                                               | ,                          |                    |                       | 2,073 *                          | 2,074 *          | 2,360 *          | 0,390 *            | 0,016 *                |
| III. (NH <sub>2</sub> ) <sub>2</sub> CO       | 2,081                      | 2,330              | 0,349                 | 2,067 2,075 *                    | 2,069<br>2,071 * | 2,360<br>2,360 * | $0,440 \\ 0,397*$  | 0,030<br>0,016 *       |
| IV. CH <sub>3</sub> CONH <sub>2</sub>         |                            | 2,330              | 0,357                 | 2,066                            | 2,067            | 2,360            | 0,446              | 0,030                  |
| V. <i>н</i> -С <sub>4</sub> Н <sub>9</sub> ОН | 2,069 * 2,079              | 2,330 *<br>2,353   | 0,350 *<br>0,353      | 2,073 *                          | 2,074 *          | 2,360 *          | 0,391*             | 0,015*                 |

<sup>\*</sup> Данные относятся к *T* = 77° К.

два димерных. Хорошо разрешенная сверхтонкая структура показывает, что строение мономерных фрагментов в образце сохраняется. Близость значения g-тензора и констант с.т.с. этих центров в разных аддуктах говорит об их родственной природе в исследуемых веществах. Все это свидетельствует о том, что возникновение этих центров нельзя рассматривать как простое нарушение кристаллической решетки. Скорее всего, их появление отражает специфику решетки аддуктов к 3,5-динитробензоату меди, в которой плотная упаковка за счет только димерных молекул может оказаться затруднительной. Судя по величинам g-тензоров мономерных единип, наиболее вероятным окружением атома меди в них является вытянутый кислородный октаэдр. Можно предположить, что в образовании мономерных

фрагментов принимают участие карбоксильные кислороды.

Наличие двух типов триплетных спектров показывает, что возникновение мономерных центров приводит к тому, что примерно у половины двуядерных молекул наблюдаются заметно большие расщепления подуровней энергии, чем у остальных молекул (и других карбоксилатов меди (1)). Нарушение карбоксильных мостиков, связывавших два атома меди, обычно сопровождается уменьшением параметров J и D ( $^{9}$ ,  $^{10}$ ). Поэтому можно допустить, что в рассматриваемом случае центры второго типа возникают в результате искажения структуры примерно половины демерных молекул, которое проявляется в увеличении параметров D и E. Известно (1), что имеется корреляция между параметром тонкого расщепления D и величиной синглет-триплетного расщепления Ј. Поэтому одной из причин увеличения D может быть усиление изотропных обменных взаимодействий в центрах второго типа, вызванное увеличением косвенного обмена вследствие понижения симметрии. Это предположение подтверждается анализом данных магнитной восприимчивости. Кривые  $\chi(T)$  с учетом вклада в восприимчивость мономерных центров позволяют оценить обменные интегралы для двух типов центров: при  $T = 300^{\circ} \text{ K } J_1 \sim 300 \text{ см}^{-1}, J_2 \sim 500 \text{ см}^{-1}$ . Величина  $I_1 \sim 300$  см<sup>-1</sup> для первого типа центров обычно наблюдается в карбоксилатах меди. Величина  $J_2 \sim 500~{
m cm}^{-1}$  довольно велика, что позволяет отнести увеличение D за счет увеличения вклада J в D. Кроме того, причиной увеличения D и E может быть изменение вкладов анизотропных эффектов: диполь-дипольного и псевдодипольного взаимодействий.

Таким образом, наличие трех типов центров в кристаллической решетке рассмотренных 3,5-динитробензоатов меди является опытным фактом. Присутствие в аддуктах I—IV сигналов 8, а в аддукте I ряда добавочных сигналов (в соединениях II—IV они выражены гораздо слабее) указывает на возможность возникновения между частью центров более слабых обменных взаимодействий, чем в димерных фрагментах. Скорее всего, это происходит в результате нарушения структуры, содержащей три описанных типа центров. Возможность существования таких дефектов не удивительна, если учесть сложный характер исходной трехцентровой структуры. Тем не менее выполненное исследование показывает, что обнаружен и проанализирован новый вид карбоксилатных комплексов, кристаллическая решетка которых включает несколько разновидностей магнитных фрагментов.

Казанский физико-технический институт Академии наук СССР Поступило 29 I 1973

Институт химии Академни наук МССР

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> Ю. В. Яблоков, В. В. Гаврилов и др., Сборн. Парамагнитный резонанс 1944—1969, «Наука», 1971, стр. 155. <sup>2</sup> Г. А. Попович, А. В. Аблов и др., ДАН, 186, 613 (1969). <sup>3</sup> Г. А. Попович, А. В. Аблов и др., ЖНХ, 16, 591 (1971). <sup>4</sup> В. Вleaney, К. D. Bowers, Proc. Roy. Soc., A214, 451 (1952). <sup>5</sup> J. N. van Niekerk, E. R. L. Schoening, Acta crystallogr., 6, 227 (1953). <sup>6</sup> Ю. В. Яблоков, ЖСХ, 5, 222 (1964). <sup>7</sup> Ю. В. Яблоков, В. В. Зеленцов, Л. Н. Романенко, Теоретич. и эксп. хим., 4, 407 (1968). <sup>8</sup> Ю. В. Яблоков, А. В. Аблов, ДАН, 144, 173 (1962). <sup>9</sup> Ю. В. Яблоков, В. В. Гаврилов и др., ЖСХ, 12, 237 (1971). <sup>10</sup> D. В. W. Yawney, R. J. Doedens, J. Am. Chem. Soc., 92, 6350 (1970).