УДК 517.946

MATEMATUKA

Э. А. ЯРВ

О ЗОЛОТАРЕВСКИХ КРИТИЧЕСКИХ ИНТЕРВАЛАХ

(Представлено академиком В. И. Смирновым 25 XII 1972)

Линейный функционал F_n в пространстве алгебраических полиномов $\{P_n(x)\}$ степени не выше n с равномерной метрикой будем задавать в форме $F_n=\mu_0,\ldots,\mu_n$, положив $F_n(x^k)=\mu_k,\ k=0,\ldots,n$.

Согласно (1), стр. 24, заданный в такой форме функционал будем называть отрезком-функционалом и иногда отрезком, а числа $\mu_h, k = 0, \dots, n,$ —

его параметрами.

Полином $Q_n(x)$, $||Q_n|| = 1$, будем называть экстремальным или обслуживающим функционал F_n , если $F_n(Q_n) = +N_n$, где N_n — норма F_n , а точ-

ки $0 \le \sigma_i \le 1$, $t = 1, \ldots, s$, в которых $|Q_n(\sigma_i)| = 1$, его узлами. Согласно (1), стр. 74, наспортом полинома $Q_n(x)$, $||Q_n|| = 1$, назовем тройку чисел (n, s, p), где n — степень $Q_n(x)$, s — число его узлов, p — число повторений на [0, 1], где повторением называем факт, когда двум соседним узлам о соответствуют одинаковые знаки отклонений.

Из (1), стр. 26 и стр. 38, следует, что если отрезок-функционал $(\mu_k)_0^n$

имеет экстремальный полином $Q_n(x)$ степени $n \geqslant 1$, то $\mu_k = \sum_i \delta_i \sigma_i^k$,

 $k=0,\ldots,n$, где $(\sigma_i)_i{}^s$ уэлы полинома $Q_n(x)$. Такую структуру называем узловой, а числа $(\delta_i)_1^s$ — нагрузками узлов полинома $O_n(x)$. Среди чисел $(\delta_i)_i$ могут оказаться и нули. Те из узлов σ_i , у которых $\delta_i \neq 0$, называем нагруженными.

Согласно (1), стр. 74, паспортом отрезка $(\mu_i)_0^n$ называем тройку чисел [n, s, p], где n — степень его экстремального полинома, s — число нагру-

женных узлов этого полинома, p — число повторений на [0,1].

Согласно (1), стр. 47, каков бы ни был отрезок-функционал $(\mu_i)^{n-1}$ $=0_0,\ldots,0_{n-1}$, существуют два таких числа $\mu_n'<\mu_n''$, что отрезок $(\mu_i)_0{}^n=$ $=\mu_0,\ldots,\mu_{n-1},\mu_n;$

а) при $\mu_n \geqslant {\mu_n}'$ обслуживается полиномом Чебышева $=\cos n$ arccos (2x-1) и не обслуживается им ни при каком значении $\mu_n < \mu_n''$;

б) при $\mu_n \leqslant \mu_n'$ обслуживается полиномом Чебышева $-T_n(x)$ и не об-

служивается им ни при каком значении $\mu_n > \mu_n'$.

Интервал (μ_n', μ_n'') называется чебышевским критическим интервалом отрезка, имеющего базис $(\mu_i)_0^{n-1}$, для n-го параметра. Обозначим через $\{Q_n(x,\theta)\}$ множество экстремальных полиномов, определенных отрезкомфункционалом $0_0, \ldots, 0_{n-2}, 1_{n-1}, \theta$ при $1/2(n-1) < \theta < 1/2(n+1)$.

Согласно (2), стр. 24, при $\theta = n/2$ это полиномы паспорта [n, n, 0], совпадающие с полиномами Е. И. Золотарева (3), приведенными к промежут-

ку [0, 1] и тах модулю, равному единице.

Согласно (4), будем говорить, что отрезок-функционал $(\mu_i)_0^n =$ $=\mu_0,\ldots,\mu_{n-1},\,\theta$ обладает золотаревской устойчивостью, если для любого $\bar{\theta}_n$ лежащего в чебышевском критическом интервале $(\mu_n' < \bar{\theta} < \mu_n'')$, отрезок $(\mu_i)_0^n$ принадлежит паспорту [n, n, 0] и обслуживается некоторым полиномом $Q_n(x,\theta)$ или $-Q_n(x,\theta)$, причем, когда θ изменяется от μ_n до μ_n , то множество обслуживающих полиномов совпадает либо с множеством ${Q_n(x,\theta)}$, либо с ${-Q_n(x,\theta)}$.

- Из (4) известно, что, каков бы ни был отрезок-функционал $(\mu_i)_0^{n-2}$, имеются два таких числа $A_{n-1}^{'} < A_{n-1}^{''}$, что отрезок вида $\mu_0, \ldots, \mu_{n-1}, \overline{\theta}$ золотаревски устойчив при $\mu_{n-1} > A_{n-1}^{''}$ и при $\mu_{n-1} < A_{n-1}^{'}$. В первом случае его обслуживают $\{Q_n(x,\theta)\}$, во втором $\{-Q_n(x,\theta)\}$. Интервал $A_{n-1}^{'}$, $A_{n-1}^{''}$] называется золотаревским критическим интервалом отрезка, [имеющего базис $(\mu_i)_0^{n-2}$, для (n-1)-го параметра.
- В (4) установлено, что волотаревский критический интервал для (n-1)-го параметра любого базиса $(\mu_i)_0^{n-2}$ охватывает чебышевский критический интервал того же параметра, т.е.

$$A_{n-1} \leq \mu_{n-1} < \mu_{n-1} \leq A_{n-1}$$

В (5) доказано, что если через $(\Delta_{i,n}^{"})_0^n$ обозначить нагрузки при разложении отрезка $\mu_0, \ldots, \mu_{n-1}, \mu_n^{"}$ по узлам $(\tau_{i,n})_0^n$ полинома Чебышева $T_n(x)$, то

$$L_n = \mu_n'' - \mu_n' = \widetilde{\Delta}^{(n)} n/2^{2n-1},$$
 (1)

где

$$\widetilde{\Delta}^{(n)} = \max_{\mathbf{0}\leqslant i\leqslant n} \varepsilon_i \, | \, \Delta_{i,\,n}^{''} \, |; \quad \varepsilon_i = \begin{cases} 1, & 0 < i < n, \\ 2, & i = 0; \ i = n. \end{cases}$$

Теорема 1. Если в отрезке-функционале $(\mu_i)_0^{n-1}$ параметр μ_{n-1} на-ходится вне золотаревского критического интервала для (n-1)-го параметра, то при разложении отрезка $\mu_0, \ldots, \mu_{n-1}, \mu_n''$ по узлам $(\tau_{i,n})_0^n$ полинома Чебышева $T_n(x)$:

- a) $npu \ \mu_{n-1} > A_{n-1}^{"} \ \Delta_{0, n}^{"} = 0 \ u \ \widetilde{\Delta}^{(n)} = 2 |\Delta_{n, n}^{"}|;$
- 6) $npu \ \mu_{n-1} < A'_{n-1} \ \Delta''_{n,n} = 0 \ u \ \widetilde{\Delta}^{(n)} = 2 |\Delta''_{0,n}|.$

Доказательство теоремы построено на использовании: а) характера зависимости $\{Q_n(x,\theta)\}$ от θ , изученного в (¹), стр. 88-95; б) теоремы о непрерывной деформации (¹), стр. 70; в) соотношения между $(\Delta_{i,n}^n)_0^n$ и $(\Delta_{i,n}^n)_0^n$ полученного в (³), где через $(\Delta_{i,n}^n)_0^n$ обозначены нагрузки при разложении отрезка $\mu_0,\ldots,\mu_{n-1},\mu_n'$ по узлам $(\tau_{i,n})_0^n$ полинома Чебышева $T_n(x)$ Теорема 2. Каков бы ни был базис $(\mu_i)_0^{n-1}$, существуют два числа

Теорема 2. Каков бы ни был базис $(\mu_i)_0^{n-1}$, существуют два числа h' < h'', обладающие следующими свойствами: при разложении отрезка-функционала $\mu_0, \ldots, \mu_{n-2}, \mu_{n-1} + h, \mu_n''(h)$ по узлам $(\tau_{i,n})_0^n$ полинома Чебышева $T_n(x)$:

- 1) условие $\Delta_{0,n}^{''}(h) = 0$ и $\bar{\Delta}^{(n)}(h) = 2(\Delta_{n,n}^{''}(h))$ выполняется при $h \ge h''$ и не выполняется при h < h'';
- 2) условие $\Delta_{n,n}^{"}(h) = 0$ и $\tilde{\Delta}^{(n)}(h) = 2 |\Delta_{0,n}^{"}(h)|$ выполняется при $h \leq h'$ и не выполняется при h > h'.

Доказательство. Сделаем два предварительных замечания.

1) При разложении по узлам $(\tau_{i, n})_0^n$ полинома Чебышева $T_n(x)$ отрезка $(\gamma_i)_0^n=0_0,\ldots,0_{n-2},h_{n-1},\gamma_n''(h)$ пмеют место выражения для нагрузок:

$$\delta_{i, n}^{"} = \begin{cases} (-1)^{n-i} \tau_{i, n} \cdot h \frac{2^{2n-1}}{\varepsilon_{i} \cdot n} & \text{при } h \geqslant 0, \\ (-1)^{n-i} (1 - \tau_{i, n}) \cdot h \cdot \frac{2^{2n-1}}{\varepsilon_{i} \cdot n} & \text{при } h < 0. \end{cases}$$
(2)

2) Если $(\Delta_{i,\ n}^{\prime\prime(1)})_0^n$ и $(\Delta_{i,\ n}^{\prime\prime(2)})_0^n$ есть нагрузки при разложении по узлам $(\tau_{i,\ n})_0^n$ полинома $T_n(x)$ отрезков $(\mu_i)_0^n=\mu_0,\ldots,\mu_{n-1},\mu_n^{\prime\prime}$ и $(\gamma_i)_0^n=\gamma_0,\ldots,\gamma_{n-1},\gamma_n^{\prime\prime},$ то нагрузки при разложении по узлам $(\tau_{i,\ n})_0^n$ полинома $T_n(x)$ отрезка $(\psi_i)_0^n=\mu_0+\gamma_0,\ldots,\mu_{n-1}+\gamma_{n-1},\psi_n^{\prime\prime}$ вычисляются как

$$\Delta_{i,n}^{"} = \Delta_{i,n}^{"(1)} + \Delta_{i,n}^{"(2)} - (-1)^{n-i}\Delta^{(n)}/\varepsilon_i, \quad i = 0, \dots, n,$$
(3)

$$\overset{\Delta^{(n)}}{\sim} = \min_{0 \leqslant i \leqslant n} \varepsilon_i \, |\, \Delta^{\text{\tiny{\it m}}(1)}_{i,\,n} + \Delta^{\text{\tiny{\it m}}(2)}_{i,\,n} \, |\, .$$

Перейдем к доказательству теоремы.

Возьмем два отрезка

$$(\mu_i)_0^n = \mu_0, \ldots, \mu_{n-1}, \ \mu_n^{''} \ \text{if} \ (\gamma_i)_0^n = 0_0, \ldots, 0_{n-2}, \ h_{n-1}, \ \gamma_n^{''}(h).$$

Тогда нагрузки при разложении по узлам $(\tau_{i,n})_0^n$ полинома $T_n(x)$ отрезка $\mu_0, \ldots, \mu_{n-2}, \mu_{n-1} + h, \mu_n''(h)$ определяются из (2) и (3).

Для того чтобы $\Delta_{0,n}''(h)=0$, необходимо и достаточно выполнения системы неравенств

$$2 \mid \Delta_{0,n}^{"}(h) \mid \leq \varepsilon_i \mid \Delta_{i,n}^{"}(h) \mid, \quad i = 1, \ldots, n.$$

Обозначив через $h_i{}''$ минимальное число, удовлетворяющее этой системе, получим

$$h_{1}^{''} = \frac{n}{2^{2^{n-1}}} \max_{0 < i \leqslant n} \frac{2 \mid \Delta_{0, n}^{''} \mid -\epsilon_{i} \mid \Delta_{i, n}^{''} \mid}{\tau_{i, n}}.$$

Для того чтобы $\bar{\Delta}^{(n)}=2\left|\Delta_{n,n}^{(n)}\right|$, необходимо и достаточно выполнения системы неравенств

$$2 \left| \Delta_{n,n}^{"}(h) \right| \geqslant \varepsilon_i \left| \Delta_{i,n}^{"}(h) \right|, \quad i = 0, \ldots, (n-1).$$

Обозначив через ${h_2}^{\prime\prime}$ минимальное число, удовлетворяющее этой системе, получим

$$h_{2}^{''}=\frac{n}{2^{2^{n}-1}}\max_{0\leqslant i\leqslant n}\frac{\varepsilon_{i}\mid\Delta_{i,\,n}^{''}\mid-2\mid\Delta_{n,\,n}^{''}\mid}{1-\tau_{i,\,n}}.$$

Тогда

$$h'' = \max\{h_2'', h_1''\}.$$

Существование и единственность числа h' доказывается аналогично. Следствие. Для границ золотаревского критического интервала для (n-1)-го параметра отрезка $(\mu_i)_{i=1}^{n-1}$ имеют место оценки

$$A_{n-1}^{"} \geqslant \max\{\mu_{n-1}^{"}, (\mu_{n-1} + h'')\}, \quad A_{n-1}^{'} \leqslant \min\{\mu_{n-1}^{'}, (\mu_{n-1} + h')\}.$$
 (4)

Теорема 3. Отрезок $(\mu_i)_0^n = \mu_0, \ldots, \mu_{n-1}, \bar{\theta}$ золотаревски устойчив, если при разложении по узлам $(\tau_{i,n})_0^n$ полинома $T_n(x)$ отрезка $\mu_0, \ldots, \mu_{n-1}, \mu_n''$:

a)
$$npu \; \mu_{n-1} > \mu_{n-1}^{"} \; u$$
 where $mecmo \; \Delta_{0,\;n}^{"} = 0 \; u \; \widetilde{\Delta}^{(n)} = 2 \, |\Delta_{n,\;n}^{"}|,$

б) при
$$\mu_{n-1} < \mu_{n-1}$$
 имеет место $\Delta_{n, n} = 0$ и $\widetilde{\Delta}^{(n)} = 2 \mid \Delta_{0, n} \mid$.

Используя теорему об единственности наилучшего продолжения не абсолютно монотонного отрезка (¹), стр. 38, докажем, что в условиях теоремы при любом $\mu_n' < \theta < \mu_n''$ отрезок-функционал $(\mu_i)_0^n$ имеет ровно n нагруженных узлов. Далее, воспользуемся следствием теоремы о непрерывной деформации (¹) стр. 78.

Следствие. Для границ золотаревского критического интервала для (n-1)-го параметра отрезка $(\mu_i)_0^{n-1}$ имеют место формулы

$$A''_{n-1} = \max\{\mu''_{n-1}, (\mu_{n-1} + h'')\}, \quad A'_{n-1} = \min\{\mu'_{n-1}, (\mu_{n-1} + h')\}.$$
 (5)

Теорема 4. Если $L_n(h)$ — длина чебышевского критического интервала для n-го параметра отрезка-функционала $\mu_0, \ldots, \mu_{n-2}, \mu_{n-1}+h, \mu_n''(h),$ а $(\Delta_{i,n})_0{}^n$ — нагрузки при разложении по узлам $(\tau_{i,n})_0{}^n$ полинома $T_n(x)$ отрезка $(\mu_i)_0{}^n = \mu_0, \ldots, \mu_{n-1}, \mu_n'',$ то при $\mu_{n-1} + h > A_{n-1}$ и при $\mu_{n-1} + h < A_{n-1}$

$$L_n(h) = |h + (|\Delta_{n,n}| - |\Delta_{0,n}|) n/2^{2n-2}|.$$
 (6)

Доказательство теоремы 4 построено на использовании теоремы 1

 π формул (1) — (3).

Следствие. Внутри или на границе золотаревского критического интервала для (n-1)-го параметра существует, по крайней мере, одна точка $\mu_{n-1}+h^{\circ}$, при которой длина чебышевского критического интервала для n-го параметра минимальна.

T е о p е м а $\, 5. \,$ Внутри или на границе золотаревского критического интервала для (n-1)-го параметра существует единственная точка $\mu_{n-1}+h^{\circ}$, при которой длина чебышевского критического интервала для n-го параметра минимальна.

Доказательство. Докажем, что $L_n(h)$ обладает следующими свой-

ствами:

1) если $L_n(h)$ возрастает в точке $h=h_{\scriptscriptstyle 0},$ то $L_n(h)$ возрастает при $h>h_{\scriptscriptstyle 0};$

2) если $L_n(h)$ убывает в точке $h = h_0$, то $L_n(h)$ убывает при $h < h_0$. Обозначим через p и m индексы ближайших к концам промежутка [0,1] узлов $(\tau_{i_1,n})_0^n$, в которых выполнены условия

$$\Delta_{p,n}^{"}(h) = 0, \quad \widetilde{\Delta}^{(n)}(h) = \varepsilon_m | \Delta_{m,n}^{"}(h) |.$$

Разобьем $[A_{n-1}, A_{n-1}]$ точками ξ_1, \ldots, ξ_l на промежутки, в каждом из которых индексы p и m не меняются.

Применив к *i*-му промежутку $(\xi_{i-1} \leq \mu_{n-1} + h < \xi_i)$ формулу (3), по-

лучим

$$L_n(h) = \tau_{m,n} - \tau_{p,n}. \tag{7}$$

Отсюда: а) необходимым и достаточным условием возрастания (убыва-

ния) $L_n(h)$ на $[\xi_{i-1}, \xi_i)$ является m < p (соответственно m > p).

Тогда, использовав то, что с увеличением h индекс p может разве лишь уменьшиться, а индекс m разве лишь увеличиться и с уменьшением h, наоборот, индекс p может разве лишь увеличиться, а индекс m разве лишь уменьшиться, получим свойства $L_n(h)$ 1) и 2).

Из доказанных свойств $L_n(h)$ следует, что, если точка h^0 существует, то она единственная. Существование же точки $h=h^0$ утверждается в следст-

вии теоремы 4.

Следствие. Необходимым и достаточным условием того, что $h=h^{\circ}$, является следующее: неравенство $m \leq p$ (см. обозначения теоремы 5) при переходе через точку $h=h^{\circ}$ меняет знак на противоположный.

Ленинградский электротехнический институт связи им. М. А. Бонч-Бруевича

Поступило 19 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. В. Вороновская, Метод функционалов и его приложения, Л., 1963. ² Е. В. Вороновская, Экстремальные полиномы конечных функционалов. Автореф. докторской диссертации, ЛГУ, 1955. ³ Е. И. Золотарев, Приложение эллиптических функций к вопросам о функциях наименее и наиболее уклоняющихся от нуля (1887). Собр. соч., в. 2, 1932. ⁴ Е. В. Вороновская, ДАН, 173, № 1, 15 (1967). ⁵ Е. В. Вороновская, Э. А. Ярв, ДАН, 197, № 1, 21 (1971).