Доклады Академии наук СССР 1973. Том 212, № 2

УДК 58.01/036.2+581.14.143.5

ФИЗИОЛОГИЯ РАСТЕНИЙ

В. Ф. АЛЬТЕРГОТ, К. Д. ДЖЕКШЕНАЛИЕВ

УСИЛЕНИЕ РЕГЕНЕРАЦИИ КОРНЕЙ МЕТАБОЛИТАМИ ТЕПЛОВОГО ПОВРЕЖДЕНИЯ

(Представлено академиком М. Х. Чайлахяном 2 І 1973)

Автотрофный тип питания, взаимообусловленность отмирания одних и роста других органов в онтогенезе привели в эволюции высших растений к выдвижению роли катаболизма, реутилизации, регенерации. Распад белка и перемещение его продуктов при локальном тепловом повреждении ли-

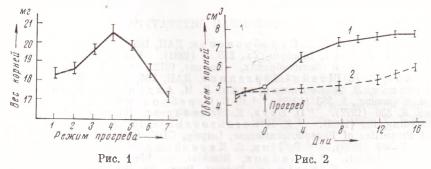


Рис. 1. Сухой вес корней традесканции (Tradescantia fluminensis) через 15 дней после прогрева верхней $^{1}/_{3}$ облиственного побега. 1-7 — ступени режима прогрева

Рис. 2. Увеличение объема корней луковицы репчатого лука (Allium сера L. сорт Бессоновский) после прогрева верхней $^{1}/_{4}$ части. Шестая ступень режима. 1 — опыт, 2 — контроль

ста, роль при этом кинетина, корнеобразования $\binom{1-3}{4-6}$, ускоренный вторичный осенний рост после жаркого сухого лета $\binom{4-6}{4-6}$ заставляют сделать предположение о новых возможностях воздействия на процессы регенерации, корнеобразования у растений.

Таблица 1

Распределение P^{32} после прогрева верхней трети предварительно инъецированного побега томата (Lycopersicum esculentum Mill., с орта Грунтовый Грибовский) 0,2 мл раствора $H_3P^{32}O_4$ с уд. активн. 7,3 μ С

		1-я ст упе нь кима	Опыт, 5-я ступень режима						
Части побега	имп мин	отн. ед.	имп, мин	отн. ед.					
Весь побег	15848	100	14758	100					
Верхняя треть побега	44500		0000						
без листьев	11562	73	8808	60					
отдельно листья	1878	12	2618	18					
с листьями	13440	85	11426	78					
Средняя треть побега									
без листьев	738	5	508	3					
отдельно листья	64	0,4	90	0,6					
Нижняя треть побега		-,-		,,,					
без корней	348	2	416	3					
отдельно корни	1256	8	2296	16					
с корнями	1604	10	2712	19					
o nopimini	1004	10	414	1 19					

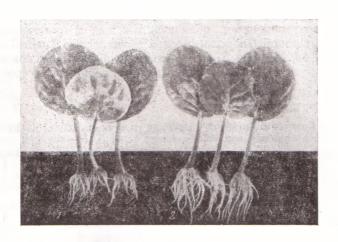


Рис. 3. Образование придаточных корней на черешках листьев сенполни (Saintpaulia ionantha Wendl., сорт Дикси Мунбим) спустя 20 дней после прогрева верхней ¹/₃ пластинки. 1 — контроль, первая ступень прогрева; 2 — опыт; пятая ступень прогрева

Задача сводилась к обогащению зоны возникновения вторичной меристемы и роста придаточных корней у отделенного побега, листа или целостного растения метаболитами путем теплового повреждения тканей апикальной части органов. При прогреве собственно регенерирующей ба-

зальной части трудно устранить противоречие, совместить оптимумы противоположных процессов: нетубокого распада, обогащения корнеобразующей зоны упрощенными, активированными метаболитами и 130 стимуляции возникновения и функ-

ции вторичной меристемы.

Верхушки побегов или целост- 2110 ных растений прогревали на $\frac{1}{4} - \frac{1}{3}$ в различных, в зависимости от объекта, средах — в воде, песке, либо в € 120 воздухе микротермостата-муфты в режиме возрастающих по дням температур, по 2 часа в день, два дня подряд (рис. 1, 2). После соответствующей ступени прогрева (1: 18— 20°, 2 часа + 18—20°, 2 часа, контроль; 2: 29°, 2 часа + 32°, 2 часа; 3: 32°, 2 часа + 35°, 2 часа; 4: 35°, 2 часа + 38°, 2 часа; 5: 38°, 2 часа + +41°, 2 часа; 6: 41°, 2 часа + 44°, 2 часа; 7: 44°, 2 часа + 47°, 2 часа) органы растения помещали основанием в воду либо в минеральный питательный раствор на свету при благоприятной температуре для последующего учета роста придаточных

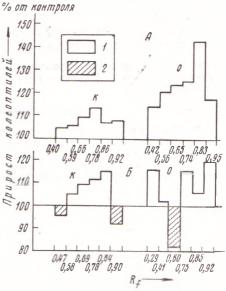


Рис. 4. Содержание ауксинов (1) и ингибиторов (2) в верхней (4) и нижней (Б) частях листа Gloxinia hybrida через 5 дней после прогрева верхней ½ листовой пластинки. к — контроль, ступень 1; о — опыт, ступень 6

корней (числа, длины, объема, сухого веса; рис. 1, 2, 3) и базипетального перемещения метаболитов (табл. 1, 2; рис. 4).

Прогрев апикальных частей органов различных растений вызвал обогащение базальных частей — зоны регенерации, корнеобразования и самих придаточных корней метаболитами пластического, энергетического,

каталитического назначения, обладающими еще и измененной структурой (6) и повышенной физиологической активностью (рис. 3). Снижение прироста (рис. 1a, ступени 5-7) связано с необратимыми повреждениями, приводящими к накоплению токсических, ингибирующих рост соединений (5).

Таблипа 2

Содержание метаболитов в листовой пластинке глоксинии (Gloxinia hybrida), после теплового повреждения верхней ее трети; 1, 4, 5, 6— ступени прогрева

Части листа	Р кислото-раствори- мый, мг на 1 г сухо- го вещества		Растворимые сахара (глюкоза), мг на ir сырого веса		Пептиды, % от сырого веса		Аминокисло- ты, мг на 1 г сырого веса	
	1	6	1	4	1	5	1	6
Верхушка (¹/а) Основание Черешок	3,11 2,98	3,40 4,12	2,18 1,66 1,83	3,13 2,32 2,27	0,12 0,20	1,04 0,86	1,57 1,50	1,88 1,93

Данные исследования позволяют считать, что обратимые тепловые повреждения апикальных частей органов растений усиливают естественные процессы притока к базальной части отделенных органов легко реутиливируемых метаболитов. Усиление регенерации при частичном повреждении надземных органов растений в естественной среде можно рассматривать как защитную, стабилизирующую реакцию организуемого уровня. В практическом аспекте перспективна своеобразная термотерапия в целях усиления регенерации (срастание компонентов при прививках, образование адвентивных почек, придаточных корней), восстановления целостности, улучшения вегетативного размножения.

Институт почвоведения и агрохимии Сибирского отделения Академии наук СССР Новосибирск

Поступило 22 XII 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ K. Mothes, L. Engelbrecht, Flora, 143, 428 (1956). ² K. Mothes, Die Naturwiss., 47, 337 (1960). ³ L. Engelbrecht, K. Mothes, Flora, 154, 279 (1964). ⁴ K. T. Сухоруков, Физиология иммунитета растений, М., Изд. АН СССР, 1952. ⁵ В. Ф. Альтергот, Тр. Инст. физиол. раст. АН СССР, 1, в. 2, 5 (1937). ⁶ В. Ф. Альтергот, К. П. Волгина, Физиол. раст., 17, в. 2, 377 (1970).