УДК 536.12 <u>ХИМИЯ</u>

м. и. банеева, н. а. бенделиани

О НОВОЙ МОДИФИКАЦИИ Al(OH)₃II, ПОЛУЧЕННОЙ ПРИ ВЫСОКИХ ДАВЛЕНИЯХ И ТЕМПЕРАТУРАХ

(Представлено академиком Л. Ф. Верещагиным 9 IV 1973)

При исследовании поведения системы $Al_2O_3-H_2O$ в условиях высоких давлений и температур была обнаружена фаза, метастабильная в нормальных условиях, рентгенограмма которой отличалась от рентгенограмм всех изученных ранее фаз в этой системе. Неизвестная фаза была получена при давлении водяного пара 80 кбар * и температуре 400° по методике, позволяющей сохранять высокое давление водного флюида на протяжении всего эксперимента (¹). Исходными твердыми продуктами служили химические реактивы α - Al_2O_3 и $Al(OH)_3$ марки ч.д.а., каждый из которых в результа-

те 15-минутной экспозиции в указанных *РТ*-условиях образовывал одну

и ту же известную фазу.

Химический состав синтезированной фазы удалось определить методом термовесового анализа, проведенного в атмосфере воздуха. Потеря веса образца при нагревании составляет 34,3% и сопровождается эндотермическим эффектом, который фиксируется в виде пика на дифференциальной кривой нагревания с минимумом при 363° (рис. 1); продукт отжига представляет собой α-Al₂O₂ (корунд). Количество потерянной во-

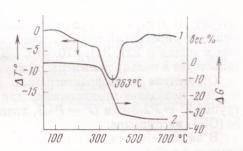


Рис. 1. Результаты термического анализа $Al(OH)_3II$. 1— дифференциально-термический анализ, 2— потери веса

ды соответствует трем молекулам на каждую молекулу окиси алюминия, п, таким образом, состав новой фазы отвечает формуле $Al_2O_3 \cdot 3H_2O$ или

Al(OH)₃.

Все рефлексы, присутствующие на дифрактограмме новой модификации, названной нами $Al(OH)_3II$, были проиндицированы на основе кубической ячейки с параметром $a=7,20\pm0,02$ Å; результаты индицирования, интенсивности рефлексов и межплоскостные расстояния приведены в табл. 1. Расчет плотности при Z=8 дает величину 2,77 г/см³; увеличение плотности по сравнению с фазой низкого давления $Al(OH)_3$ (гиббсит) составляет 14,0%. Плотность спрессованного порошка новой фазы, измеренная пикнометрическим способом, оказалась равной $2,6\pm0,1$ г/см³.

Поскольку было очевидно, что речь идет о полиморфизме Al(OH)₃, вызванном действием давления, то для отыскания типа структуры новой плотной модификации следовало в первую очередь обратиться к структурам, характерным для гидроокислов трехвалентных металлов, имеющих больший, по сравнению с алюминием, ионный радиус. Оказалось, что индексы рефлексов Al(OH)₃II и характер распределения интенсивностей обнаруживают явную аналогию с таковыми для гидроокиси индия состава

^{*} Давление в камере оценивалось по шкале, основанной на скачках электросопротивления Ві (25,4; 26,9; 77,0 кбар).

Таблица 1 Межплоскостные расстоянця, интенсивность и индексы отражений новой фазы Al (OH)3 II. $\lambda=1,54178$ Å

$I_{\mathtt{BM3}}$	hkl	$d_{ exttt{M3M}}$	$d_{ m BMY}$	Івиз	hkl	d_{MBM}	$d_{ m BM4}$
100 10 10 30 60 5 10 15 35 5 60 25	200 220 221 310 311 222 320 321 400 410, 322 420 422	3,579 2,549 2,407 2,259 2,171 2,067 1,998 1,926 1,796 1,751 1,613 1,469	3,601 2,547 2,402 2,278 2,172 2,079 1,998 1,924 1,801 1,747 1,611 1,470	5 10 5 10 10 5 10 5 5 10	520, 432 440 530, 433 531 600, 442 620 622 444 640 642 820, 644	1,334 1,275 1,239 1,220 1,200 1,137 1,085 1,043 1,000 0,9620 0,8760	1,337 1,274 1,235 1,218 1,201 1,139 1,086 1,040 0,9990 0,9626 0,8736

 $In(OH)_3$, которая считается изоструктурной $Sc(OH)_3$ (2). Объемоцентрированная кубическая ячейка гидроокиси скандия (пространственная группа $T_h^5 = Im3$, Z = 8) может рассматриваться как сверхструктура по отношению к мономолекулярной ячейке ReO_3 , которая в свою очередь родственна на структуре перовскита ($CaTiO_3$).

Однако в отличие от Sc(OH)_з дифрактограммы In(OH)_з (³, ⁴) и Al(OH)_зII содержат рефлексы, запрещенные законом погасания для объемноцентрированной ячейки, такие как 111, 210, 311, 320 в случае гидроокиси индия и 221, 311, 320, 410, 520, 531 в случае Al(OH)_зII, что свидетельствует в пользу примитивной ячейки.

Отсутствие на дифрактограммах обеих фаз отражений h00, где h нечетные, позволяет предположить для них одну из двух пространственных групп: $T^4 = P2_13$ или $O^2 = P4_23$, хотя близость их структур к структуре $Sc(OH)_3$ несомненна.

В заключение авторы выражают благодарность Д. С. Порывкину за помощь в работе.

Институт физики высоких давлений Академии наук СССР Москва Поступило 3 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. А. Бенделиани, С. В. Попова, Л. Ф. Верещагин, Геохимия, № 5, 499 (1966). ² К. Schubert, A. Seitz, Zs. anorg. u. allgem. Chem., 256, 226 (1948). ³ А. Раlm, J. Phys. Coll. Chem., 52, 959 (1948). ⁴ R. Roy, M. W. Shafer, J. Phys. Chem., 58, 372 (1954).