УДК 510

МАТЕМАТИКА

В. В. ГИМОН

О ЗАВИСИМОСТИ ПРАВИЛ ВЫВОДА ВТОРОГО ЭТАЖА СТУПЕНЧАТОЙ СЕМАНТИЧЕСКОЙ СИСТЕМЫ МАРКОВА

(Представлено академиком А. А. Дородницыным 19 II 1973)

Мы предполагаем известными введенные А. А. Марковым языки \mathcal{A}_1 и \mathcal{A}_2 (\mathcal{L}_1 и \mathcal{L}_2 в (¹)), в частности, определение верной (истинной) формулы в каждом из этих языков. Замкнутую формулу A из \mathcal{A}_1 называем ложной, если верна импликация $\supset A$ (\neq). Напоминаем, что система S_2 содержит следующие правила вывода:

1)
$$\frac{A \supset AB}{B}$$
; 2) $\frac{\supset AB \supset BC}{\supset AC}$; 3) $\frac{B}{\supset AB}$; 4) $\frac{\supset AB \supset AC}{\supset A \& BC}$;
5) $\frac{\supset AC \supset BC}{\supset \bigvee ABC}$; 6) $\frac{\mathscr{L}\mathscr{M}}{\&\mathscr{L}\mathscr{M}}$; 7) $\frac{\&\mathscr{L}\mathscr{M}}{\mathscr{L}}$; 8) $\frac{\&\mathscr{L}\mathscr{M}}{\mathscr{M}}$;
9) $\frac{\supset \mathbb{F}_{p}^{X}(D)B}{\supset \exists XDB}$

где A, B, C — замкнутые формулы A_1 , D — формула A_2 в переменной X, P — формальное слово, $\mathscr L$ и $\mathscr M$ — замкнутые формулы A_2 (в дальнейшем, если нет спецпальной оговорки, все формулы считаются замкнутыми).

Формула \mathscr{M} называется выводимой в S_2 из формулы \mathscr{L} (пишем $\mathscr{L} \vdash \mathscr{M}$), если она совпадает с \mathscr{L} , или верна в семантике \mathring{H}_2 , или получает-

ся по правилу вывода из формул, выводимых из ${\mathscr L}$.

А. А. Марков установил, что система S_2 не является независимой и эквивалентна своей подсистеме S_2 , получающейся отбрасыванием правила 9). Целью настоящей заметки является доказательство того, что сохранение правила 9) в системе позволяет опустить правила 4) и 5) и что никакие дальнейшие упрощения уже невозможны.

кие дальнейшие упрощения уже невозможны. Мы обозначаем символом S_2'' результат исключения правил 4) и 5) из S_2 , а символом S_2^0 — результат замены в системе S_2' правил 4) и 5) сле-

дующими:

$$4^{\rm o}) \ \frac{\supset AB}{\supset A\& AB} \cdot \quad 5^{\rm o}) \ \frac{\supset AB}{\supset \bigvee ABB} \, .$$

Как известно, формуле A из A, можно сопоставить формулу $[A^x]$ (также из A) в переменной X такую, что верны импликации $\supset A \exists X [A^x]$ п $\supset \exists X [A^x]A$ и распознаваема истинность каждой формулы $\vdash_{P} ([A^x]A)$. Мы предполагаем фиксированными переменную X и способ построения $[A^x]$ по A. Введем систему S_2^* , состоящую из правил 1), 3), 6), 7), 8) системы S_2 и правила

Сохраняя определение выводимости в S_2 для всех рассматриваемых систем (с изменением лишь набора правил), мы говорим кроме того, что $\mathcal M$ выводима из $\mathcal L$ с высотой h (h — натуральное число), если $\mathcal M$

совпадает с \mathscr{L} , или верна, или получается по одному из правил вывода, все посылки которого выводимы из \mathscr{L} с высотой h-1.

Tеорема 1. $\mathit{Hycrb}\ \mathscr{L}\ u\ \mathscr{M}-\mathit{формулы}\ \mathit{H}_{2}$. Следующие утверждения

эквивалентны:

a) L⊢M & S2;

6) £⊢M & S20; в) существует число h такое, что $\mathcal{L} \vdash \mathcal{M}$ в S_2 с высотой h; г) существует число h такое, что $\mathcal{L} \vdash \mathcal{M}$ в S_2 " с высотой h.

Доказательство включает следующие этапы.

а) \rightarrow б). Индукция по выводу в S_2 , что допустимо вследствие устранимости правила 9). При этом четвертое правило заменяется по схеме

Для правила 5) осуществляется двойственная замена.

 $(5) \to 8$). Система S_2^0 не содержит правил с бесконечным числом посылок, поэтому выводимость в ней всегда является выводимостью с конечной высотой. Индукцией по h устанавливаем, что если $\mathscr{L} \vdash \mathscr{M}$ в S_2 с высотой h, то $\mathscr{L} \vdash \mathscr{M}$ в S_2 с высотой 4h. При этом второе правило заменяется по схеме $(\mathsf{F}_{\mathsf{P}}^{\mathsf{X}}([A^{\mathsf{X}}) \mathsf{Bepha})$

$$\frac{A \Rightarrow AB}{B} \Rightarrow BC$$

$$C \qquad (\mathsf{F}_{Q}^{X}([A^{X}) \text{ложна})$$

$$\dots \Rightarrow \mathsf{F}_{P}^{X}([A^{X})C \Rightarrow \mathsf{F}_{Q}^{X}([A^{X})C \dots$$

$$\Rightarrow AC$$

правило 40 — по схеме

$$(\mathsf{F}_{p}^{\mathbf{x}}([A^{\mathbf{x}})$$
 верна)
$$\underbrace{\frac{A \supset AB}{B}}_{} \longrightarrow B \& AB}$$
 $(\mathsf{F}_{Q}^{\mathbf{x}}([A^{\mathbf{x}})$ ложна)
$$\dots \supset \mathsf{F}_{p}^{\mathbf{x}}([A^{\mathbf{x}}) \& AB \quad \dots \supset \mathsf{F}_{Q}^{\mathbf{x}}([A^{\mathbf{x}}) \& AB \dots)$$

п правило 50 — по схеме

$$(\mathsf{F}_{P}^{\mathbf{x}}([\bigvee AB^{\mathbf{x}})$$
 и A верны
$$\underbrace{\frac{A \supset AB}{B}}_{} \qquad \qquad (\mathsf{F}_{Q}^{\mathbf{x}}([\bigvee AB^{\mathbf{x}})$$
 и B верны)
$$\underbrace{\frac{A \supset AB}{B}}_{} \qquad \qquad (\mathsf{F}_{R}^{\mathbf{x}}([\bigvee AB^{\mathbf{x}})$$
ложна)
$$\underbrace{\dots \supset \mathsf{F}_{P}^{\mathbf{x}}([\bigvee AB^{\mathbf{x}})B \dots \supset \mathsf{F}_{R}^{\mathbf{x}}([\bigvee AB^{\mathbf{x}})B \dots}_{} \supset \mathsf{F}_{R}^{\mathbf{x}}([\bigvee AB^{\mathbf{x}})B \dots}_{})$$

 $(B) \to \Gamma$). Индукцией по h доказываем, что выводимость в S_2^* с высотой hвлечет выводимость в S_2 " с высотой 2h. Применение правила 9^*) заменяется применением 9) и затем 2) с верной формулой $\Rightarrow A \exists X [A^x]$ в качестве левой посылки.

 Γ) \rightarrow a). Очевидно.

 $\mathrm{T}\,\mathrm{e}\,\mathrm{o}\,\mathrm{p}\,\mathrm{e}\,\mathrm{m}\,\mathrm{a}\,2$. Существует конструктивная последовательность $\{(\mathscr{L}_n,$ \mathcal{M}_n) $\}$ пар формул языка \mathcal{H}_2 такая, что

1) $\mathscr{L}_n \vdash \mathscr{M}_n \ \ \mathcal{S}_2;$

2) неверно, что при каждом п можно вывести \mathcal{M}_n из \mathcal{L}_n в некоторой

 $no\partial c$ истеме системы S_2 , не включающей в себя ни S_2' , ни S_2'' .

Построим требуемую последовательность. Пусть U — универсальная функция для одноместных частично-рекурсивных функций. Найдем для каждого числа n замкнутые формулы $T_n{}^0$, $T_n{}^1$ и $T_n{}^2$ языка \mathcal{A}_1 такие, что T_{n}^{-i} верна тогда и только тогда, когда $U(n,n)\!=\!i.$ Положим

$$E_{n} \rightleftharpoons \bigvee T_{n}{}^{0}T_{n}{}^{1}, \quad F_{n} \rightleftharpoons T_{n}{}^{1}, \quad G_{n} \rightleftharpoons \bigvee T_{n}{}^{0}T_{n}{}^{2}, \\ H_{n} \rightleftharpoons \& (=) \bigvee T_{n}{}^{1}T_{n}{}^{2}, \quad I_{n} \rightleftharpoons \bigvee (\neq) T_{n}{}^{0}, \\ \mathscr{L}_{n} \rightleftharpoons \& \& \& \supset (=) (=) E_{n} \supset F_{n}G_{n}(=), \quad \mathscr{M}_{n} \rightleftharpoons \& \supset H_{n}(\neq) I_{n}.$$

С учетом ложности формул & $T_n^0 T_n^1$, & $T_n^0 T_n^2$, & $T_n^1 T_n^2$ без труда строится вывод \mathcal{M}_n из \mathcal{L}_n в S_2' . Для доказательства (2) определяем при каждом n классы \Re_n , \Re_n , ветственно

 \mathfrak{R}_n^{-1} : 1) верные формулы \mathcal{A}_i ,

2) все импликации,

3) формулу E_n ;

 \Re_n^2 : 1) все формулы \mathcal{H}_i ,

2) верные импликации,

3) импликации, посылка которых начинается знаком \vee или Ξ , или заключение - знаком &,

4) импликации $\supseteq AB$ такие, что верна $\supseteq \&E_{n}G_{n}B$;

 \Re_n^3 : 1) все формулы \mathcal{A}_1 ,

2) импликации $\supset AB$ такие, что верна $\supset A \bigvee F_n B$, $\supset \& AG_n B$;

 $\mathfrak{R}_{n}^{4,9}$: 1) все формулы \mathcal{A}_{i} ,

2) импликации $\supset AB$ такие, что верна либо $\supset \&E_nG_nB$, либо $=\&E_nAB$:

 $\Re_n^{5,9}$: 1) формулы B языка A_1 такие, что верна либо $\supset E_n F_n$, либо $\supset E_n B$,

2) импликации $\supset AB$ такие, что верна либо $\supset \&E_{\pi}AF_{n}$, либо $\supset \&E_nAB$;

 \mathfrak{R}_n^{7} : 1) верные формулы \mathcal{A}_2 ,

2) формулу \mathscr{L}_n ;

 \mathfrak{R}_n^8 : 1) верные формулы \mathcal{A}_2 ,

2) формулы \mathscr{L}_n , && \supset (=)(=) $E_n\supset F_nG_n$, & \supset (=)(=) E_n п содержащие вместе с любыми формулами \mathscr{L} и \mathscr{M} конъюнкцию & $\mathscr{L}\mathscr{M}$.

Определяем, кроме того, класс \Re_n^6 : 1) верные формулы \mathcal{A}_2 ,

2) все формулы H_1 и все импликации,

3) формулы \mathscr{L}_n , && \supset (=)(=) $E_n\supset F_nG_n$, & \supset (=)(=) E_n . Индукцией по выводу устанавливается, что в \mathfrak{R}_n^{i} ($\mathfrak{R}_n^{i,j}$) входит всякая формула \mathcal{M} , выводимая из \mathcal{L}_n без использования правила i (правил i, j). Для формулы \mathcal{M}_n , как легко убедиться, принадлежность к любому из описанных классов влечет ложность одной из формул T_n^0 , T_n^1 , T_n^2 . В подсистемах системы S_2 , не включающих в себя ни S_2' , ни S_2'' , отсутствует либо одно из правил 1), 2), 3), 6), 7), 8), либо правило 9) вместе с 4) или 5). Если бы выводы всех \mathcal{M}_n из соответствующих \mathcal{L}_n осуществлялись в таких системах, то, используя сказанное выше, мы получили бы эффективный метод нахождения ложной формулы T_n^i по числу n. Последнее стандартным путем приводится к противоречию с определением T_n^i .

Из теорем 1 и 2 в сочетании с теоремой Маркова об устранимости правила 9) вытекает, что среди подсистем S_2 полной системе эквивалентны те и только те, которые содержат S_2' или S_2'' . В частности, S_2' и S_2'' неза-

Московский государственный университет им. М. В. Ломоносова

Поступило 19 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. A. Markov, Rev. Intern. Phil., № 98, 4, 477 (1971).