УДК 548.736

КРИСТАЛЛОГРАФИЯ

Р. И. БОЧКОВА, Ю. Н. САФЬЯНОВ, Э. А. КУЗЬМИН, академик Н. В. БЕЛОВ

РАСШИФРОВКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ K₂SmF₃ **МЕТОДОМ РОМБОВ ПИКОВ**

Отобранные для рентгеновского исследования монокристаллы K₂SmF₅ представляли собой вытянутые косоугольные параллелепипеды желтоватого цвета с размерами $0.45 \times 0.25 \times 0.7$ мм³ н $0.2 \times 0.25 \times 0.4$ мм³. Параметры примитивной ромбической ячейки a = 10.80; b = 6.62; c = 7.51 Å получены по рентгенограммам вращения и разверткам нулевых слоевых линий h0l и hk0. Приступая к рентгеноструктурному исследованию, располагали лишь качественным химическим анализом соединения, показавшим наличие в нем атомов Sm, K и F (либо O).

 \Im кспериментальный массив — 370 ненулевых отражений k0l-h2l и hk0 - hk7 — получен на интегрирующем рентгенгоннометре Вейсенберга

по эквинаклонной схеме и измерены по маркам почернения с шагом 2". (Излучение $\operatorname{Ag} K_{\alpha}$, $\operatorname{max} \sin \theta / \lambda =$ $=0.9 \text{ Å}^{-1}.)$

Зональные и сериальные погасания соответствуют двум федоровским группам (ф.г.) $C_{2v} - Pna \, 2_1$ и D_{2h}^{16} Заключение в пользу пер-Pnam.вой сделано на основании анализа трехмерной функции Патерсона по методу ромбов пиков (1) и подтверждено в ходе структурной расшифров-

ки и ее уточнения.

Функция Патерсона P(uvw) приведена в точечном виде на рис. 1. Для ее расшифровки недостаточно использовать только тяжелые атомы самария, поскольку одна связка атомов в ф.г. Рпа 2, (как и во всех группах класса mm2) образует псевдодентросимметричный параллелограмм и соответствующая функция $ar{M}_{\scriptscriptstyle A}$ выделяет одновременно два изображения структуры: прямое и инвертированное (2). Для получения единственного решения нужны две связки атомов, при отыскании которых был применен метод ромбов (3).

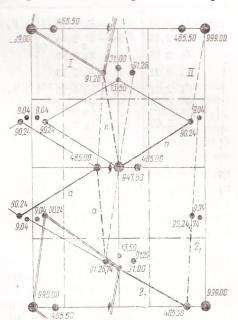


Рис. 1. Трехмерная функция Патерсона в точечном виде. Первое число - вес, второе — высота в сотых долях оси г. Выделены системы ромбов пиков для отрезков I и II и параллелограмм взаимодействия пиков начальной звезды

Выбирая за исходный отрезок І, соединяющий начало координат с пиком 91,26 ($u_1 = 16, v_1 = 42, w_4 = 16$) = 26) *, выделяем ромбы для каждого элемента симметрии и отмечаем жирными линиями стороны, соответствующие исходному отрезку (рис. 1). Отыскав ромб от клиноплоскости п, фиксируем ее положение (4) относительно отрезка I (отсекает по оси x $\frac{1}{2} \cdot 50 = 25$) и находим координату

Координаты пиков даются в сотых долях осей.

x первого атома: $x_1 = 0$. Далее выделяем ромб, фиксирующий положение илоскости a, и определяем координату $y - y_1 = 6$. Найденные сателлитные ромбы от двух плоскостей скольжения приводятся во взаимное соответствие через основной — от двойной винтовой оси (5). Один из пиков связки этого ромба (очень слабый) несколько смещен из положения, определяемого для него геометрически. Начало по оси z в ф.г. $Pna2_1$ не фиксирует-

 $\begin{tabular}{ll} \begin{tabular}{ll} \b$

Атомы	x/a	y, b	z, c	B_j	Атомы	x/a	y/b	z/c	$B_{m{j}}$
Sm K ₁ K ₂ F ₁	$ \begin{array}{c c} -0,001 \\ 0,331 \\ 0,399 \\ 0,012 \end{array} $	0,066 0,042 0,024 0,404	0 0,262 0,758 0,003	$ \begin{array}{c c} -0,15 \\ -0,18 \\ -0,11 \\ -0,15 \end{array} $	F ₂ F ₃ F ₄ F ₅	0,074 0,078 0,305 0,335	0,154 0,151 0,330 0,369	0,295 0,738 0,010 0,485	$ \begin{array}{c c} -0,75 \\ -0,64 \\ -0,49 \\ -0,27 \end{array} $

Таблица 2 Межатомные расстояния в структуре K₂SmF₅, Å

Toloman S	Sm-полиэдры	К1, К2-окружение		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$F_1 - F_3 = 2,70$ $F_3 - F_3' = 2,64$ $F_1 = 2,83$ $F_2' - F_3' = 3,33$ $F_3 - F_2 = 4,19$ $F_2' = 2,64$ $F_5 = 2,79$ $F_4 = 3,59$	$F_{4} - F_{1} 2,71$ $F_{2}' 2,98$ $F_{3}' 3,00$ $F_{2} 3,61$ $F_{5} - F_{2}' 2,95$ $F_{2} 3,15$ $F_{3}' 3,27$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$K_2 - F_1 2,69$ $F'_1 2,74$ $F_2 2,68$ $F_3 2,84$ $F_4 2,78$ $F'_4 2,69$ $F_5 3,07$ $F'_5 2,66$

ся, и соответствующую координату одного из атомов можно задать произвольно. Рассматривая взаимное положение двух атомов, связанных исходным вектором, определяем координаты второго атома и, учитывая мощность пиков, первый отождествляем с атомом Sm(0, 6, 0), второй — с K(16, 48, 26).

Аналогично находятся координаты другой пары атомов через систему ромбов пиков для отрезка II, показанную на рис. 1 пунктирными линиями. Специфическое положение отрезка (он почти параллелен плоскости a) приводит к слиянию оказавшихся рядом пиков связки, поскольку, согласно (6), ромб от плоскости, параллельной такому исходному отрезку, вырождается в линейку с удвоенным пиком связки. Координаты атомов второй пары Sm(0,6,0), K(33,0,24).

Согласование двух найденных отрезков осуществляется по параллелограммам взаимодействия (5). На рис. 1 показан только параллелограмм начальной звезды (двойными линиями), из которого следует, что отрезки имеют один общий атом Sm. Окончательно получаем координаты трех атомов: Sm (0, 6, 0); $K_1(16, 48, 26)$ и $K_2(33, 0, 24)$.

Первый синтез электронной плотности был построен по трем независимым атомам (R-фактор 16,8%) и позволил локализовать еще пять, принятых, по соображениям стехиометрии за атомы F*; фактор расходимости

^{*} И.-к. спектр, снятый на ИКС-14A с призмой LiF (3000—4000 см $^{-1}$), показал, что в данном соединении нет групп (ОН) $^-$ и молекул воды.

структуры по всем атомам составил 12,0%, а дальнейшее уточнение методом наименьших квадратов снизило его до 7,9%. Таким образом, была установлена химическая формула соединения $K_2 SmF_5$, элементарная ячейка содержит четыре формульных единицы: z=4.

Заключительные координаты базисных атомов с изотропными температурными коэффициентами приведены в табл. 1, а рассчитанные по ним

межатомные расстояния — в табл. 2.

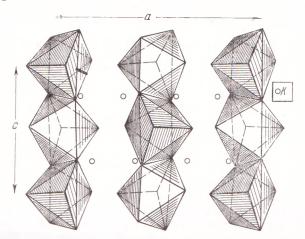


Рис. 2. Проекция структуры $K_2 SmF_5$ на плоскость xz. Семивершинники $[SmF_5]$ и атомы K (вблизи уровней 0 и $^1/_2$ по y)

Кристаллическая структура $K_2\mathrm{Sm}F_5$ представлена на рис. 2. Sm-семивершинники, октаэдры с «наклеенной» тригональной пирамидой, соединяются общими ребрами в дискретные ценочки вдоль оси $c-[\mathrm{Sm}F_5]_{\infty}$. В цепочке соседние полиэдры взаимно повернуты двойной винтовой осью, а их центры — атомы Sm — располагаются на уровнях $\pm^6/_{100}$ по оси b. Находящиеся на одном уровне по оси c атомы Sm из разных ценочек отличаются по высоте вдоль b на $\pm^{38}/_{100}$. Самариевые ценочки связаны друг с другом расположенными между ними атомами калия.

В заключение авторы благодарят В. В. Илюхина за ценные советы и внимание к работе, Н. А. Носырева за предоставленные для исследования

образцы.

Горьковский исследовательский физико-технический институт Горьковского государственного университета им. Н. И. Лобачевского

Поступило 18 V 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Э. А. Кузьмин, В. П. Головачев, Н. В. Белов, ДАН, 192, № 1, 86 (1970).

² Э. А. Кузьмин, В. В. Илюхин, Н. В. Белов, ДАН, 205, № 1 (1972).

³ Э. А. Кузьмин, В. П. Головачев и др., Сборн. Прямые и патерсоновские методы расшифровки кристаллических структур, Кишинев, 1972.

⁴ Э. А. Кузьмин, В. П. Головачев и др., Кристаллография, 17, № 5 (1972).

⁵ Э. А. Кузьмин, В. П. Головачев, Н. В. Белов, там же, 17, № 3 (1972).

⁶ Э. А. Кузьмин, В. П. Головачев, Н. В. Белов, ДАН, 207, № 6 (1972).