УДК 539.89

ТЕХНИЧЕСКАЯ ФИЗИКА

С. С. ГРИГОРЯН, Я. А. ПАЧЕПСКИЙ

О ДЕЙСТВИИ СИЛЬНОГО ПОДЗЕМНОГО ВЗРЫВА В ПЛОТНОЙ ГОРНОЙ ПОРОДЕ

(Представлено академиком Л. И. Седовым 16 Х 1972)

Действие сильного подземного взрыва, т. е. совокупность изменений в массиве горной породы, куда был помещен заряд, может изучаться, в частности, путем расчетов. Для этого необходимы модель, описывающая поведение материала—горной породы, модель источника движений, вызванных локальным выделением большой энергии, и методика численного решения уравнений сохранения совместно с уравнениями состояния.

Рассматриваются плотные горные породы, для которых в экспериментально достижимых пределах чисто объемное деформирование обратимо. Предполагается, что материал разрушается либо путем отрыва при до-

стижении максимальным главным напряжением критического значения $\sigma_* \geqslant 0$, либо путем скола по площадкам максимального касательного напряжения. Обозначим: p— давление (среднее напряжение), J_2 , J_3 — второй и третий инварианты девиатора тензора напряжений. Для неразрушенного сколом материала существует зависимость $J_2 = F(p, J_3)$ такая, что при выполнении в элементе материала соотношений

$$J_2 = F(p, J_3), \quad \frac{\partial}{\partial t} \left[J_2 - F(p, J_3) \right] > 0$$
(1)

сдвиговое деформирование перестает быть обратимым. В этом случае при низком уровне напряжений происходит разрушение путем скола, при более высоких напряжениях материал обладает пластичностью по сдвигу: существует

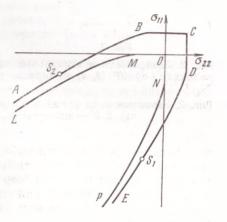


Рис. 1. Диаграмма состояний материала в плоскости $\sigma_{11}-\sigma_{22}$ для случая $\sigma_{22}=\sigma_{33}$

зависимость $J_2 = F_b(p, J_3)$ такая, что при выполнении (1) для $J_2 \ge F_b(p, J_3)$ реализуется сдвиговая пластичность, а для $J_2 < F_b(p, J_3)$ — разрушение сколом. У неразрушенного и разрушенного сколом материалов совпадают кривые объемного сжатия, но, вообще говоря, рознятся модули сдвига и поверхности пределов упругости: разрушенный сколом материал обладает сдвиговой пластичностью с условием пластичности $J_2 = F_s(p, J_3)$, причем $F_s(p, J_3) \le F(p, J_3)$.

Пусть σ_{11} , σ_{22} , σ_{33} — главные напряжения. Диаграмма состояний материала в плоскости σ_{11} — σ_{22} для случая равенства двух главных напряжений ($\sigma_{22} = \sigma_{33}$) приведена на рис. 1 (¹). Точки, изображающие состояния неразрушенного материала, заполняют внутренность и границу фигуры AS_2BCDS_1E . На отрезках S_1D , S_2B реализуется разрушение сколом, на AS_2 и ES_1 — сдвиговая пластичность в неразрушенном материале; состояния материала, разрушенного сколом, изображаются точками внутреннос-

ти и границы фигуры LHONP. На BC и CD в неразрушенном материале и на MO, ON в разрушенном сколом происходит разрушение путем отрыва. Полагаем, что в условиях одномерных движений со сферической сим-

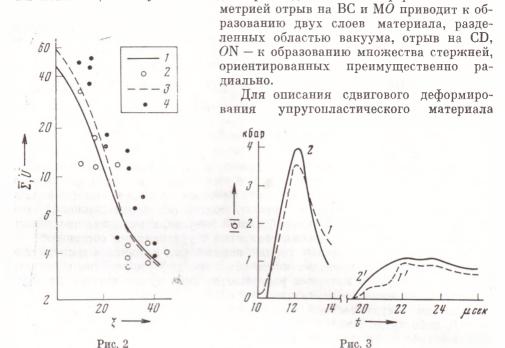


Рис. 2. Зависимость максимальных значений параметров $\overline{\Sigma} = 10^4 \Sigma_{\rm max}$ (1, 2) и $\overline{U} = \max_{\tau} (u \ / \ c_l) \cdot 10^4$ (3, 4) от безразмерной координаты ξ . 1, 3 — расчет, 2, 4 — эксперимент

Рис. 3. Зависимость от времени напряжения σ в испытании «Хардхэт»: 1, 1' — расчет, 2, 2' — эксперимент, 1, 2-r=61.8 м, 1', 2' — r=120 м

использованы соотношения работ (2 , 3). Из рассмотрения уравнения притока тепла для случая обратимых процессов следует, что в качестве основных термодинамических параметров могут быть выбраны удельный объем v, удельная внутренняя энергия E и J_2 и в предположении, что модуль сдвига G = G(v), может быть получена структура зависимости $p = p(v, E, J_2)$:

$$p(v, E, J_2) = \varphi\left(v, E - \frac{v}{2G}J_2\right) - \frac{1}{2G}\left(1 - \frac{d \ln G}{d \ln v}\right)J_2.$$
 (2)

Для произвольных процессов принимается гипотеза работы (4), позволяющая сохранить (2) и на случай необратимости. При чисто объемном деформировании $p(v, E, 0) = \varphi(v, E)$. Разлагая φ в ряд по E и удерживая нулевой и первый члены разложения, получаем уравнение типа $\mathrm{Mu} - \Gamma$ рюнайзена $\varphi(v, E) = f(v) + h(v)E$. Полагаем, что $h(v) = \Gamma / v$, Γ находится по константам материала при нормальных условиях. Тогда, в силу справедливости (2) на ударной адиабате, определяя из данных экспериментов по ударному сжатию с учетом (1) или закона Γ ука зависимости $p_H(v)$, $E_H(v)$, $J_{2H}(v)$, подстановкой их в (2) находим f(v). Экспериментальные значения $p_H(v)$ приближались в среднем зависимостью

$$p = \frac{K}{n} \left[\left(\frac{v}{v_0} \right)^{-n} - 1 \right],$$

K — модуль объемного сжатия при нормальных условиях, константа n находилась из условий наилучшего приближения.

Стержневая система, образующаяся при разрушении отрывом, описывается системой уравнений, получаемой в одномерном приближении из интегральных законов сохранения и предположения о выполнении в стержнях закона Гука при их обратимом деформировании. Считается, что после выполнения в элементе материала условия разрушения должно пройти некоторое время до момента, когда справедлива система уравнений разрушенного материала. В этом промежутке времени происходит релаксация параметров материала или параметров состояния до значений в разрушенном материале.

Источник движения моделируется полостью радиуса r_0 , в которой в начальный момент содержится газ с показателем адиабаты ү. Полная энергия газа равна мощности взрыва W, ω — отношение кинетической энергии газа к потенциальной. Учитывается противодавление p_{00} . Безразмерные параметры вводятся путем обезразмеривания параметров размерности скорости по c_l — скорости продольных упругих волн, плотности — по ρ_0 — начальной плотности материала, напряжения — по $\rho_0 c_l^2$. Комбинация имеет размерность длины; безразмерные время и эйлерова

координата равны $\tau = tc_l / r_*$, $\xi = r / r_*$; величина $\lambda = r_0 / r_*$. Для всякого безразмерного параметра П может быть найдена зависимость

$$\Pi = \Pi(\lambda, \gamma, \omega; \nu, n, \Gamma, \alpha_1, \ldots, \alpha_k; \xi, \tau), \tag{3}$$

где $\nu-$ коэффициент Пуассона, $\alpha_1,\ldots,\ \alpha_k-$ прочие безразмерные параметры модели материала. Введенные безразмерные характеристики позволяют пересчитывать результаты одного расчета для некоторого материала на взрывы любой мощности в этом материале (если влияние противодавления незначительно).

Описанная выше теоретическая схема была применена для численного моделирования взрывов в граните, в котором проводился взрыв «Хардхэт» мощностью в 5 кт (США, (6, 7)). Для численного анализа использовалась программа решения одномерных задач «ПРОЗА», основанная на применении конечно-разностной схемы «крест» (8). Некоторые результаты представлены на рис. 2, 3. Рассчитанный радиус зоны разрушенного материала равен 195 м, опытная величина оценивается в 150 м, радиус образовавшейся полости в эксперименте 19 м, в расчете 17,2 м.

Поскольку параметры материала определяются из экспериментов с большим разбросом, а λ , γ , ω — эффективные для данного материала значения — находятся в ходе расчетов, целесообразно рассмотреть влияние

							Таблица 1		
	λ	Υ	ω	n	Г	٧	×	P_{co}	
Σ_{\max} ξ_c	_ 	++++	+ -+	+++++	+	+++	+ -	+ -	

изменения безразмерных параметров на получаемые данные о действия взрыва. В качестве характеристик действия взрыва взяты зависимость максимального радиального напряжения Σ_{max} от координаты ξ и радиусы полости Ес и зоны разрушения Е. Знаки частных производных этих функций по некоторым безразмерным параметрам в окрестности значений, использованных в расчете, приведены в табл. 1. Введено обозначение P_{00} = $= p_{00} / (\rho_0 c_i^2)$; варьирование пределов пластичности и разрушения проводилось путем умножения функций F, F_s на константы \varkappa , \varkappa_s соответственно. Отметим также, что $\partial \xi_c / \partial \varkappa_s < 0$, $\partial \xi_s / \partial \varkappa_s > 0$, в ближней зоне $\partial \Sigma_{\max} / \partial \varkappa_s < 0$, а начиная с некоторого $\xi = \xi_{\Sigma}(\varkappa_s)$, $\partial \Sigma_{\max} / \partial \varkappa_s > 0$.

С удалением от места взрыва влияние изменений параметров источника на значения Σ_{\max} уменьшается, а влияние изменений величин ν , κ_s и P_{oo} растет.

Научно-исследовательский институт механики Московского государственного университета им. М. В. Ломоносова

Поступило 8 X 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. С. Григорян, ПММ, 31, в. 4 (1967). ² С. С. Григорян, ДАН, 124, № 2 (1959). ³ С. С. Григорян, ПММ, 24, в. 6 (1960). ⁴ С. С. Григорян, ПММ, 24, в. 4 (1960). ⁵ Л. Д. Ландау. Е. М. Лифшиц, Статистическая физика (классическая и квантовая), М.— Л., 1951. ⁶ Э. Фаччиоли, А. Х.-С. Анг, В сборн. Действие ядерного взрыва, М., 1971. ⁷ Peaceful Uses of Nuclear Explosions, Vienna, 1970. ⁸ Б. А. Рождественский, Н. Н. Яненко, Системы квазилинейных уравнений, М., 1968.