УДК 550.93: 552.33/571.54/

С. Л. МИРКИНА, А. Я. ЖИДКОВ, М. Н. ГОЛУБЧИНА

О РАДИОЛОГИЧЕСКОМ ВОЗРАСТЕ ЩЕЛОЧНЫХ ПОРОД И ГРАНИТОИДОВ СЕВЕРНОГО ПРИБАЙКАЛЬЯ

(Представлено академиком Ю. А. Кузнецовым 22 V 1972)

Северное Прибайкалье является областью весьма широкого развития фанерозойского гранитоидного и щелочного магматизма. Дифференцированное гравимагнитное поле, многообразие морфоструктурных типов массивов, занимающих различное структурно-тектоническое положение, сложный петрографический состав пород и широкий металлогенический спектр сопутствующей минерализации указывают на полиформационный и разновозрастный состав гранитоидов и щелочных пород. Однако расчленение магматических комплексов по возрасту представляет собой трудную и пока не решенную задачу, так как подавляющее большинство массивов прорывает наиболее молодые образования региона — карбонатные отложения среднего кембрия — и нигде не перекрывается осадками древнее четвертичных. В этой связи радпологическое обоснование возрастных групп гранитоидов и щелочных пород приобретает первостепенное значение.

Сравнительно немногочисленные изотопные датировки по палеозойским гранитоидам и щелочным породам Северного Прибайкалья обпаруживают заметный разброс цифр абсолютного возраста, что связапо не только с разповозрастностью, но и с характером исследованных объектов (табл. 1). Так,

Таблица 1 Радиологический возраст гранитондов и щелочных пород Северного Прибайкалья

Нороды, минералы	Метод изучения	Возраст, млн лет		
Гранитоиды Биотиты гранитоидов Щелочные породы Слюды щелочных пород Акцессорные минералы щелочных пород	Калий-аргоновый То же » » » » Ураново-свиндовый	230—280 270—320 230—260 300—350 320—360		

сопоставление показывает, что валовые пробы гранитоидов дают более юный возраст по сравнению со слюдами, входящими в их состав, а возраст акцессорных минералов щелочных пород, рассчитанный по ураново-ториево-свинцовым изотопным отношениям, примерно совпадает с возрастом ассоциирующих с ними слюд и заметно древнее калий-аргонового возраста валовых проб самих пород. Расхождение радиологических возрастов акцессориев и валовых проб щелочных пород составляет почти 100 млн лет, что вряд ли может быть объяснено длительностью становления интрузивного комплекса. Радпологическое изучение районов со сложной геологической историей развития, проведенное в последние годы разными исследователями, показывает, что влияние процессов перекристаллизации, распада твердых фаз, метасоматизма и фракционирования изотопов меньше сказывается на ураново-ториево-свинцовых системах и значительно больше на

калий-аргоновых, в особенности для полевошпатовой составной части пород. Несовпадение калий-аргонового возраста биотитов с геологическими и пругими ралиологическими ланными о времени эндогенных пропессов установлено на примере магматических и метаморфических комплексов обширной территории юга Сибирской платформы и ее скланчатого обрамленпя (1). В итоге можно с уверенностью сказать, что датировки, полученные по акпессорным минералам, с наибольшей вероятностью отражают время образования пород, а данные калий-аргонового возраста — время последнего наиболее интенсивного их изменения. Только этим, по-видимому, можно объясцить близкое совпадение возраста валовых проб различных по составу, геологической позиции и формационной принаплежности гранитондов и щелочных — нефелиновых сиенитов Северного Прибайкалья. Тем не менее, эти данные нередко принимаются за критерий абсолютного возраста пород, что является одной из причин то омоложения северобайкальских щелочных и нефелиновых сиенитов (2), то объединения гранитоидов и шелочных пород в единый сложный по составу и длительноформирующийся комплекс (³), то, наконец, выделения из палеозойских гранитоидов самостоятельного мезозойского комплекса (4). Эти представления весьма интересны, но они нуждаются в комплексных радиологических обоснованиях.

Таким образом, расчленение послекембрийского магматизма рассматриваемого региона при помощи радиологических методов необходимо осуществлять по падежным объектам и на пдентичном и достаточно полном материале проводить возрастную корреляцию гранитопдов и щелочных пород. Для этой цели нами используются акцессорные минералы и первичные пеизмененные слюды. Данные же калий-аргонового изучения валовых проб и породообразующих минералов представляют интерес для оценки возраста послелующего метасоматоза и перскристаллизации.

Изложенное побудило авторов обратиться к уточнению возраста щелочных пород Северного Прибайкалья и в дополнение к опубликованным данным (5) проанализировать свинцовым методом цирконы, чевкинит 83° и и бастнезит. Вычисленные значения возраста для цирконов и бастнезита по наиболее достоверным для данного случая отношениям Pb²⁰⁶/U²³⁸ и

Таблица 2 Апалитические данные и возраст акцессорных минералов щалочных пород Севанлого Прибайкалья

	Место взятия пробы	Содержание, %			Изотопный состав свинца, %				Возраст, млн лет*		
	и название породы	U	Th	Pb	204	206	207	208	Pb206 U238	Pb ²⁰ 5	Ph208 Th232
Ц иркон 6 095	Сыннырский массив, альбитизированный	0,0891	0,152	0,0091	0,69	33,58	15,27	50,46	361	-	33 0
Циркон ПБЛ	нефелиновый спенит Бурпалинский мас- сив, альбитизирован- ный щелочной пег-	0,244	0,132	0,0200	0,46	62,46	10,29	26,79	330	336	325
Чевкинит 83е	матит То же, альбитизиро- ванные щелочные сиенит-порфиры	0,0210	2,20	0,116	1,07	20,43	16,57	61,93	80	-	253
Чевкинит 421 Лопарит 409 ⁶	То же, альбититы	0,055 0,0905	2,51 2,11	0,0740 0,162		16,38 22,86	11,10 18,19	71,85 57,81	435 322	764 422	314 250
Сфен 3530а	То же, нефелиновые	0,0060	0,0245	0,6190	1,30	26,53	20,49	51,68	78	-	336
Бастнезит А-2К	р. Горемына, цеолит- карбонатная порода	0,0038	1,12	0,0216	0,27	5,64	3,83	90,26	331	-	345

^{*} При вычислении возраста использовались константы: $\lambda_{286} = 1,53 \cdot 10^{-16}$ год $^{-1}$; $\lambda_{232} = 4,88 \cdot 10^{-11}$ год $^{-1}$; $\lambda_{236} = 9,72 \cdot 10^{-16}$ год $^{-1}$; $U_{238} : U_{238} = 137,7$ (*). Значения возраста, вычисленные по отношению $Pb_2^{e_7}Pb_2^{e_8}$, не приводятся, так как для минералов моложе 500 млн лет они не являются достоверными, По-правка на «обыкновенный» свинец вносилась по изотопному составу свинца галенита, приведенному в тексте.

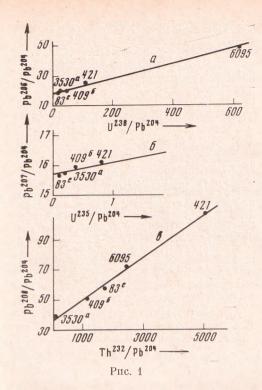
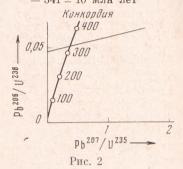



Рис. 1. Изохроны для вычисления возраста группы акцессорных минералов: $a-\mathrm{Pb^{206}}/\mathrm{Pb^{204}}=(0.0486\pm0.0017)\,\mathrm{U^{238}}/\mathrm{Pb^{204}}+(18.59\pm0.46);\,\mathrm{TPb^{206}}/\mathrm{U^{238}}=355\pm12\,\mathrm{млн.}\,\mathrm{лет};\,6-\mathrm{Pb^{207}}/\mathrm{Pb^{204}}=(0.346\pm0.031)\,\mathrm{U^{235}}/\mathrm{Pb^{204}}+(15.73\pm0.14);\,\,\mathrm{TPb^{207}}/\mathrm{U^{235}}=347\pm15\,\,\mathrm{млн.}\,\mathrm{лет};\,\,\,a-\mathrm{Pb^{208}}/\mathrm{Pb^{204}}=(0.0144\pm0.0005)\,\mathrm{Th^{232}}/\mathrm{Pb^{204}}+(36.39\pm1.24);\,\,\,\mathrm{TPb^{208}}/\mathrm{Th^{232}}=330\pm12\,\,\mathrm{млн.}\,\mathrm{лет}$

Рис. 2. Изохрона для вычисления согласованных значений возраста. $Pb^{206} / U^{238} = (0,00904 \pm 0,00008) Pb^{207} / U^{235} + (0,0477 \pm 0,0007); TPb^{206} / U^{238} = TPb^{207} / U^{235} = TPb^{207} / Pb^{206} = 341 \pm 10$ млн лет

 ${\rm Pb^{208}/Th^{232}}$ составляют 325-361 млн лет (см. табл. 2). Не согласующиеся с этими данными и расходящиеся между собой возрастные значения, рассчитанные для чевкинита $83^{\rm e}$, можно объяснить довольно значительным ($\sim\!80\,\%$) содержанием в этом минерале «обыкновенного» свинца. Это же обстоятельство явилось причиной дискордантности ранее полученных данных для акцессорных минералов Бурпалинского щелочного массива (чевкинит 421, сфен и лопарит).

Основываясь на геологических критериях одновозрастности массивов Северо-Байкальской щелочной провинции и полагая, что все минералы в момент своего образования захватили «обыкновенный» свинец одинакового состава, мы сочли возможным применить графические методы обработки аналитических данных, позволяющие получить наиболее близкий к «истинному» возраст щелочных образований (см. рис. 1 и 2) (6, 7). При построении изохрон использованы минералы, содержащие более 50% «обыкновенного» свинца (см. табл. 2). Корректность изохрон в различных системах координат и результатов по отдельным акцессорным минералам свидетельствует о замкнутости ураново-ториево-свинцовой системы в исследованных образцах и о надежности установленных значений абсолютного возраста в пределах 330—360 млн лет.

При помощи графо-аналитических методов вычислен также изотопный состав «обыкновенного» свинца, находящегося в минералах этой группы: $Pb^{206}/Pb^{204}: Pb^{207}/Pb^{204}: Pb^{208}/Pb^{204} = 18,59:15,73:36,39;$ он сопоставлен со специально измеренным изотопным составом свинца, выделенного из полевошпатовой фракции щелочных сиенитов (18,43:15,75:36,24) и из галенита, сингенетичного с изученными акцессорными минералами (17,90:15,80:38,34). Близость изотопного состава «обыкновенного» свинца, находящегося в акцессорных минералах, и свинца, содержащегося в полевых шпатах, указывает, вероятно, на сходство физико-химических условий кристаллизации акцессориев и породообразующих минералов. Это подтверждает наше представление о высокотемпературном генезисе щелочноредкометальных метасоматитов и теснейшей их связи с первично-магмати-

ческими щелочными - нефелиновыми спенитами Бурпалинского и Сын-

нырского массивов.

По результатам проведенных исследований сыннырский щелочной комплекс следует считать позднедевонским (в среднем 340 млн лет), возникшим в результате средненалеозойской активизации байкалид.

Всесоюзный научно-исследовательский геологический институт Ленинграл

Поступило 12 V 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. М. Мануйлова, А. Н. Неелов, Л. П. Никитина, Сов. геол., № 4 (1969). ² Р. П. Тихоненкова, И. А. Нечаева, Е. Д. Осокин, Петрологии калиевых щелочных пород, «Наука», 1971. ³ В. В. Архангельская, Геотектоника, № 2 (1972). ⁴ В. С. Малых, ДАН, 194, № 1 (1970). ⁵ А. Я. Жидков, С. Л. Миркина, М. Н. Голубчина, ДАН, 149, № 1 (1963). ⁶ С. Л. Миркина, Э. К. Герлинг, Ю. А. Шукалюков, Геохимия, № 8 (1962). ⁷ L. R. Stieff, T. W. Stern, Geochim. et cosmochim. acta, 22, 176 (1961). ⁸ L. R. Stieff, T. W. Stern et al., Tables for the Calculation of Lead Isotope Ages, Progress Pap. Geol Surv. Washington, 1959, p. 40.