УДК 535.215 ФИЗИКА

В. В. НЕМОШКАЛЕНКО, А. И. СЕНКЕВИЧ, В. Г. АЛЕШИН, В. В. ГОРСКИЙ

РЕНТГЕНОВСКИЕ ФОТОЭЛЕКТРОННЫЕ СПЕКТРЫ СПЛАВОВ ЗОЛОТО — СЕРЕБРО

(Представлено академиком С. В. Вонсовским 23 XI 1972)

В данной работе проводилось исследование рентгеновских фотоэлектронных спектров сплавов золото — серебро. Эксперимент был выполнен на электронном спектрометре типа Вариан IEE-15. Разрешающая способность спектрометра 1,0 эв (напряжение па анализаторе составляло 30 эв). Точность определения энергии связи 0,1 эв. Давление в камере для образдов $1 \cdot 10^{-7}$ тор. В качестве источника фотонов использовалось K_{α} -излучение алюминия (1486,6 эв). Энергия связи определялась относительно уровня Ферми материала спектрометра.

При исследовании рентгеновских фотоэлектронных спектров меди, серебра и золота (1) было показано, что структура их валентной полосы весьма различна. Если у меди та часть фотоэлектронного спектра, которая отображает распределение *d*-электронов в валентной полосе, имеет про-

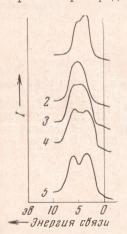


Рис. 1. Рентгеновские фотоэлектронные спектры валентной зоны сплавов золото — серебро: I-Ag, 2-Ag+9% Au, 3-Ag+51% Au, 4-Ag+89% Au, 5-Au

стую форму, то у серебра намечается расщепление, которое у золота уже достигает ощутимой величины 2,4 эв. Кроме того, исследование рентгеновских фотоэлектронных спектров золота (2), выполненное на приборе с повышенным разрешением, показало, что спектр золота имеет весьма сложную тонкую структуру, которая хорошо коррелирует с расчетом распределения валентных электронов по энергиям.

Согласно расчетам зонной структуры этих металлов (3), ширина валентной зоны увеличивается при возрастании атомного номера изоэлектронного элемента: медь — серебро — золото. Это находит отражение и в рентгеновских фотоэлектронных спектрах. Действительно, у серебра ширина валентной зоны по рентгеновским фотоэлектронным данным 8,7 эв, а у золота — 9,3 эв. При исследовании сплавов никель — медь (4) и палладий — серебро (5) было показано, что, хотя по своей электронной структуре эти сплавы весьма близки, структура их валентной зоны различна. Это в первую очередь связано с различием в структуре валентной зоны компонентов сплава. Поэтому можно ожидать, что в сплавах, образованных изоэлек-

тронными элементами, такими, например, как серебро и золото, эффект сплавления также проявится в структуре валентной полосы этих сплавов.

Спектры фотоэлектронов от сплавов золото — серебро и чистых металлов, полученные в настоящем исследовании, приведены на рис. 1. Как видно, ширина валентной полосы в сплавах золото — серебро возрастает при возрастании концентрации золота в сплаве: 8,7 эв (9 ат.% золота), 8,8 эв (51 ат.% золота), 8,9 эв (89 ат.% золота). У чистых металлов и

у сплавов видна неразрешенная тонкая структура. Характерным как для сплавов золото — серебро, так и для других исследованных сплавов никель — медь и палладий — серебро, является то, что рептгеновские фотоэлектронные спектры сплавов не могут быть представлены простой суммой спектров чистых элементов. Имеются изменения в структуре фотоэлектронных спектров, которые свидетельствуют о более сильных изменениях плотности состояний.

Таблица 1 Значения энергий связи остовных электронов золота и серебра в сплавах золото — серебро

Образец	Уровни							
	3p _{1/2}	$3p_{3/2}$	3d _{3/2}	3ds/2	4d _{3/2}	4d5/2	4f8/2	4/7/2
9% Au + Ag 51% Au + Ag 89% Au + Ag Au	603,8 603,7 603,7 603,7	572,8 572,9 573,0 572,8	374,1 374,0 374,0 374,0	368,1 368,0 368,0 368,0	353,0 353,1 353,1 353,1	334,9 335,1 335,1 335,1	87,5 87,6 87,6 87,5	83,8 83,9 83,9 83,8

Интересной особенностью рентгеновских фотоэлектронных спектров, представленных на рис. 1, является отчетливо видная ступенька на уровне Ферми. Плотность состояний на уровне Ферми является малой, и она в основном представляет плотность s, p-состояний. Имеются все основания считать, что вероятность перехода монотонно и пе сильно меняется в пределах d-зоны переходных металлов и сплавов и поэтому фотоэлектронные спектры исследованных сплавов дают картину распределения плотности состояний.

Для сплавов золото — серебро и чистых элементов измерялись также значения энергий связи остовных электронов. Результаты измерений представлены в табл. 1. Величины сдвигов являются весьма малыми: 0,1—0,2 эв, т. е. практически находятся в пределах ошибки эксперимента, и поэтому трудно делать какие-либо окончательные выводы. Однако из приведенных данных следует, что имеется некоторая тенденция к увеличению электронной плотности в окрестности «атомов» серебра в его сплавах с золотом по сравнению с чистым элементом.

Институт металлофизики Академии наук УССР Киев Поступило 17 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Y. Baer, P. F. Hedén et al., Phys. Scripta, 1, 55 (1970). ² D. A. Shierly, Phys. Rev., B, 5, 4709 (1972). ³ Solid State Phys., 26, Ed. H. E. H. Renreich, F. Seitz, D. Turnbull, N. Y.— London, 1971, p. 104. ⁴ S. Hufner, G. K. Wertheim et al., Phys. Rev. Lett., 26, 488 (1972). ⁵ B. B. Немошкаленко, А. И. Сенкевич, В. Г. Алешин, ДАН, 211, № 5 (1973).