УДК 576.35:576.314

БИОХИМИЯ

В. А. РОЗЕНБЛАТ, А. С. СЕРПИНСКАЯ, А. А. СТАВРОВСКАЯ

О МЕХАНИЗМЕ РЕЗИСТЕНТНОСТИ К КОЛХИЦИНУ СУБЛИНИИ МЫШИНЫХ КЛЕТОК L

(Представлено академиком А. С. Спириным 16 III 1973)

Метафазные ингибиторы — колхицин, колцемид, винбластин и др.— нарушают организацию микротрубочек в клетке и связанные с микротрубочками функции. В частности, они разрушают веретено деления и блокируют клетки в метафазе. Колхицин, по-видимому, специфически взаимодействует с белком микротрубочек (4, 12, 14).

Чувствительность различных клеток к колхицину неодинакова (1-3, 6, 8). Вопрос, с чем может быть связана относительная резистентность к колхицину, удобно изучать в культуре клеток, используя сублинии одного и того же штамма, различающиеся по уровню чувствительности к

препарату.

В данной работе мы сравнивали клетки линии L и резистентной к колцемиду (производному колхицина) и крос-резистентной к колхицину сублинии L-53 (1) и показали, что, во-первых, резистентные клетки гораздо хуже пакапливают колхицин-H3 и, во-вторых, это различие, по-видимому, пе обусловлено изменением способности их микротрубочного белка связывать колхицин.

Клетки линии L и резистентной сублинии L-53 (1) росли на стекле в среде Игла с гидролизатом лактальбумина и с 10% бычьей сыворотки, причем L-53 — в присутствии $0.2~\mu\text{г/м}$ л ($0.5~\mu$ M) колцемида. Примерно неделю перед опытом клетки L-53 культивировали без колцемида (1 рассев, 1-2 смены среды).

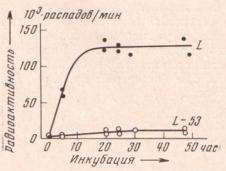
Колхицин-Н³ (Amersham) с удельной активностью 1,5 С/ммол был

получен в виде 0,67 мМ спиртового раствора.

Для опыта по связыванию колхицина- H^3 в культуре клетки рассевали накануне по 3 млн на флакон Карреля ($\sim 20~{\rm cm}^2$). Давали меченый колхицин, меняя среду. После инкубации клетки отмывали от свободной (внеклеточной) метки и растворяли одним из двух способов: 1) флакон с клетками быстро (30 сек.) ополаскивали 3 раза холодным физиологическим раствором (по $10-20~{\rm mn}$), а затем оставляли на несколько часов при 37° с 0,5 мл смеси, содержащей 0,125% трипсина и 0,5% тритона X-100 (Serva); 2) клетки снимали со стекла трипсином и отмывали их (как в работе (11)) 3 раза $5-10~{\rm mn}$ среды или физиологического раствора центрифугированием при 100-200~g по $5-10~{\rm muh}$, осадок растворяли в $0,2~{\rm mn}$ 1~M гиамина в метаноле при 37° в течение ночи.

В опытах по связыванию колхицина- H^3 в гомогенатах получали клеточные осадки (см. выше способ 2), разводили их холодным 10 мM K⁺-фосфатным буфером, рH 6,8—7,0; через 10—20 мин. клетки разрушали либо в стеклянном гомогенизаторе, либо интенсивным перемешиванием на магнитной мешалке, либо на ультразвуковом гомогенизаторе (MSE). Гомогенаты осветляли центрифугированием при 1500—15000 g в течение 20—30 мин. и инкубировали с меченым колхицином (1 мл инкубационной смеси получался из 10—20 млн клеток). Связанную с белком метку отделяли, используя фильтры из ДЭАЭ-бумаги (Watman, DE 81), по методам,

описанным в работах (¹², ¹³).


Количество радиоактивности в образцах определяли на сцинтилляционных счетчиках «Mark-1» или «Mark-2» (Nuclear Chicago). Эффективность счета 30—50%. Оптическую плотность осветленных гомогенатов измеряли на спектрофотометре СФ-4.

На рис. 1 показана зависимость количества колхицина- H^3 в клетках L и L-53 от времени инкубации в среде, содержащей 0,5 μ M препарата. Клетки L связывают колхицин гораздо интенсивнее; их плато в 12 раз

выше.

В ряде аналогичных опытов мы изучали накопление колхицина- ${\rm H}^3$ в концентрациях 0,11 и 0,44 μ M клетками L и L-53 за 3 и 6 час. Количество колхицина в клетках L-53 по сравнению с L составляло 1,6—5,5%. Таким

Рис. 1. Накопление колхицина-Н³ целыми клетками L и L-53 в культуре. Клетки инкубировали при 37° в среде с 0,5 µМ колхицина-Н³. Отмывание после инкубации — быстрое, прямо во флаконах. Каждая точка соответствует одному флакону Карреля. 0 час. = 10—15 сек.

образом, в резистентных клетках накапливается меньше колхицина, чем

в чувствительных.

Поскольку колхицин действует на микротрубочки, естественно, возникает вопрос, может ли белок микротрубочек резистентных клеток связывать колхицин. Для ответа на этот вопрос осветленные гомогенаты клеток L и L-53 инкубировали с колхицином-Н³ и определяли количество радиоактивности, связанной с белком (задерживающейся на ДЭАЭ-фильтрах). Результаты в пересчете как на число гомогенизированных клеток, так и на оптическую плотность инкубационной смеси приведены в табл. 1. Мы

Таблица 1 Связывание колхицина-Н⁸ с белком в гомогенатах клеток L и L-53

Ne oumra	Связанная рациоактивность (10 ³ расп мин) в пересчете на 1 млн гомогенизированных клеток			Связанная радиоактивность (10° расп'мин) в пересчете на оптическую плотность инкубированной смеси		
	L	L-53	L-53/L	L	L-53	L-53/L
1 2 3 4	19 10 11 10	26 12 7,5	1,4 1,2 0,68 1,2	29 31 67 9,5	36 47 31 9,6	1,2 1,5 0,47 1,0

Примечание. Осветленные гомогенаты инкубировали 2 часа при 37° с 1,1 μM колхицином-Н³.

не обнаружили больших различий в связывании колхицина белком чувствительных и резистентных клеток.

Результаты наших опытов показали, что возникновение резистентности к колцемиду и к колхицину у сублинии L-53 связано со значительным уменьшением поглощения колхицина целыми клетками. В то же время, гомогенаты клеток L и резистентных клеток L-53 связывают колхицин одинаково (во всяком случае, разница — если она и есть — мала по сравнению с разницей в накоплении препарата целыми клетками). Это значит,

что клетки L-53 резистентны, по-видимому, не за счет «резистентности» белка микротрубочек— объекта действия колхицина внутри клетки.

Поскольку разница в связывании колхицина снимается разрушением клеток, можно думать, что препарат хуже проникает в резистентные клетки, чем в чувствительные. Такой механизм резистентности для ряда других соединений описан в литературе. Именно изменением проницаемости плазматической мембраны обусловлена резистентность некоторых линий клеток хомячка к дауномицину и к актиномицину Д (°), клеток мышиных лейкозов к метотрексату (10) и к азотистому иприту (5), клеток мышиной саркомы к ароматическому производному бис-гуанилгидразона (7).

По нашим предварительным данным, обработка детергентом (твином-80) резистептных клеток L-53 усиливает митостатическое действие колцемида и увеличивает включение колхицина-H³. Это также говорит в пользу предположения об измененной проницаемости мембраны рези-

стентных клеток для колхицица и колцемида.

Авторы благодарны проф. Ю. М. Васильеву за постоянное внимание и помощь.

Институт белка Академии наук СССР Пущино-на-Оке Поступило 6 III 1973

Институт экспериментальной и клинической онкологии Академии медиципских наук СССР Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Ставронская, Бюлл. эксп. биол. и мед., 76, № 9, 143 (1973). ² А. А. Ставронская, Е. С. Какпакова, С. Л. Любский, Цитология, 14, 2, 213 (1972). ³ М. Аdams, J. R. Warr, Exp. Cell. Res., 71, 473 (1972). ⁴ G. G. Borisy, E. W. Taylor, J. Cell. Biol., 34, 2, 525 (1972). ⁵ G. J. Goldenberg, C. L. Vanstone et al., Cancer Res., 30, 2285 (1970). ⁶ C. Granzow, U. Ehe-Galster, Zs. Krebsforsch., 74, 4, 329 (1970). ⁷ M. T. Hakala, Biochem. Pharm., 20, 81 (1971). ⁸ A. R. Midley, B. Pierce, F. J. Dixon, Science, 130, 40 (1959). ⁹ H. Riehm, J. Biedler, Cancer Res., 32, 6, 1195 (1972). ¹⁰ F. M. Sirotnak, S. Kurita, Cancer Res., 28, 1, 75 (1968). ¹¹ E. W. Taylor, J. Cell. Biol., 25, 145 (1965). ¹² R. C. Weisenberg, G. G. Borisy, E. W. Taylor, Biochemistry, 7, 12, 4466 (1968). ¹³ L. Wilson, J. Bryan, A. Ruby, D. Mazia, Proc. Nat. Acad. Sci. U.S.A., 66, 3, 807 (1970). ¹⁴ L. Wilson, M. Friedkin, Biochemistry, 6, 10, 3126 (1967).