УДК 517.537

MATEMATUKA

Академик АН АзербССР И. П. ИБРАГИМОВ, Н. И. НАГНИБИДА, Т. С. ШІМАТА

ОБ ОДНОМ БАЗИСЕ ПРОСТРАНСТВА АНАЛИТИЧЕСКИХ В КОЛЬЦЕ ФУНКЦИЙ

Через $A\left(R_1,R_2\right)$ обозначим пространство всех однозначных и аналитических в кольце $K\left(0\leqslant R_1<|z|< R_2\leqslant\infty\right)$ функций с регулярной топологией. В этой заметке находятся условия, при которых система

$$\{z^{hn}(\varphi_0(z),\ldots,\varphi_{n-1}(z))\}_{k=-\infty}^{\infty},$$
 (1)

где $\varphi_s(z) \in A(R_1, R_2)$ и $n, n \ge 1,$ фиксированное целое, образует в $A(R_1, R_2)$ квазистепенной базис*. Другими словами, мы находим условия, при которых оператор T, определенный на элементах естественного базиса $\{z^m\}_{m=-\infty}^{\infty}$ соотношениями

$$Tz^{kn+s} = z^{kn}\varphi_s(z), \quad k = 0, \pm 1, \dots; \quad 0 \le s \le n-1,$$
 (2)

может быть расширен до линейного взаимно однозначного и взаимно непрерывного отображения (т. е. изоморфизма) пространства $A\left(R_1,R_2\right)$ на себя. Поэтому для дальнейшего напомним $\binom{2}{1}$, что упомянутый оператор T может быть линейно и непрерывно расширен на все пространство $A\left(R_1,R_2\right)$ лишь в том случае, когда его матрицы

$$[t_{i,k}]_{i,k=-\infty}^{\infty}$$
 (T. e. $Tz^k = \sum_{i=-\infty}^{\infty} t_{i,k}z^i, k=0,\pm 1,\ldots$)

удовлетворяют следующему условию: для всякой пары $(\rho_i, \rho_2), R_i < \rho_i < \rho_2 < R_2$, существует пара $(r_i, r_2), R_i < r_1 < r_2 < R_2$, и постоянная $C = C(\rho_1, \rho_2)$ такие, что $|t_{i,k}| \le Cr^k/\rho^i$, $i, k = 0, \pm 1, \ldots$, где

$$r^{k} = \begin{cases} r_{2}^{k}, & k \ge 0, \\ r_{1}^{k}, & k < 0, \end{cases} \quad \rho^{i} = \begin{cases} \rho_{2}^{i}, & i \ge 0, \\ \rho_{1}^{i}, & i < 0. \end{cases}$$
(3)

Отметим, что аналогичный вопрос для пространства функций, аналитических в круге, в одном частном случае рассматривался в работе (3). Значительно позже он был решен для таких пространств в работе (4).

Оказывается, что нахождение условий базисности системы (1) в пространстве $A(R_1,R_2)$ может быть сведено к решению другой (интересной самой по себе) задаче. Именно, имеет место

 Π е м м а. Cистема (1) образует в $A(R_1,R_2)$ квазистепенной базис тогда и только тогда, когда определяемый соотношениями (2) оператор T может быть расширен до изоморфизма, перестановочного в $A(R_1,R_2)$ с оператором U^n умножения на функцию z^n (τ . e. Uf(z)=zf(z)).

Пусть (1) является квазистепенным базисом в $A(R_1, R_2)$, т. е. существует изоморфизм T такой, что

$$Tz^{kn+s} = z^{kn}\varphi_s(z), \quad k = 0, \pm 1, \dots; \quad 0 \le s \le n-1,$$

^{*} В дальнейшем базис считается квазистепенным в смысле работы (4) (см. также (5), стр. 376).

или $Tz^{kn+s} = U^{kn} \varphi_s(z)$. Тогда $U^n Tz^{kn+s} = z^{(k+1)n} \varphi_s(z) = TU^n z^{kn+s}$ на базисных элементах. Ввиду непрерывности операторов U^n и T этих соотношений достаточно для перестановочности U^n и T в $A(R_1,R_2)$. Достаточность очевидна, так как, по предположению, определяемый соотношениями (2) оператор T является изоморфизмом $A(R_1,R_2)$, перестановочным с U^n , и поэтому система (1) образует квазистепенной базис.

3 амечание 1. Оператор U^n , очевидно, также является изоморфиз-

мом пространства $A(R_1, R_2)$, так как z^n не имеет нулей в кольце K.

Займемся сперва описанием всех липейных непрерывных операторов T в $A(R_1,R_2)$, перестановочных с U^n . Если

$$Tz^{s} = \varphi_{s}(z) = \sum_{i=-\infty}^{\infty} \sum_{l=0}^{n-1} \varphi_{in+l,s} \cdot z^{in+l}, \quad 0 \le s \le n-1,$$
(4)

то из соотношения $TU^{kn}=U^{kn}T$ следует, что все элементы матрицы оператора T полностью определяются лишь с помощью функций $\phi_s(z)$, а именно:

$$t_{i_{n+l, k_{n+s}}} = \varphi_{(i-k)} + i_{n+l, s}, \quad i, k = 0, \pm 1, \ldots; \quad 0 \le l, s \le n-1.$$

Действительно, имеем

$$Tz^{kn+s} = TU^{kn}z^{s} = U^{kn}\varphi_{s}(z) = z^{kn}\varphi_{s}(z) = \sum_{i=-\infty}^{\infty} \sum_{l=0}^{n-1} \varphi_{in+l,s}z^{(k+i)n+l} = \sum_{i=-\infty}^{\infty} \sum_{l=0}^{n-1} \varphi_{(i-h)n+l,s}z^{in+l}.$$

Отсюда следует (4).

Кроме того, должно выполняться также соответствующее условие (3) непрерывности оператора T, которое, как нетрудно проверить, в данном случае равносильно тому, что функции $\varphi_s(z) \subseteq A(R_1, R_2)$. Иными словами, поскольку область значений перестановочного с U^n оператора T принадлежит $A(R_1, R_2)$, он автоматически является непрерывным. В этом случае условие (3) с учетом (4) имеет вид

$$|\varphi_{(i-k)\,n+l,\,s}| \le C r^{kn+s} / \rho^{in+l}, \quad i, k = 0, \pm 1, \dots; \quad 0 \le s \le n-1.$$

Полагая здесь k=0 и учитывая произвольность ρ $(R_1 < \rho_1 < \rho_2 < R_2)$, мы убеждаемся в том, что $\phi_s(z) \in A(R_1,R_2)$. Наоборот, если $\phi_s(z) \in A(R_1,R_2)$, то условие (3) выполняется при $r=\rho$, если только учесть оценки для коэффициентов Лорана этих функций.

Учитывая теперь (4), доказывается

Теорема 1. Оператор T является линейным и непрерывным оператором в $A(R_1,R_2)$, перестановочным с U^n , лишь в том и только в том случае, когда он имеет вид

$$T = \sum_{s=1}^{\infty} \sum_{s=1}^{n-1} \varphi_{m,s} U^{m-s} A_s, \tag{5}$$

где $A_sf(z)=A_s\sum_{i=-\infty}^{\infty}f_i\cdot z^i=\sum_{i=-\infty}^{\infty}f_{in+s}z^{in+s},\ f(z)$ \in $A(R_1,R_2),\ u$ его харак-

теристические функции $\varphi_s(z) = \sum_{m=-\infty}^{\infty} \varphi_{m,s} z^m$ принадлежат пространству $A(R_1,R_2)$.

В самом деле, пусть T — линейный и непрерывный в $A(R_1, R_2)$ оператор, перестановочный с U^n , т. е. его матрица имеет вид (4) и $\varphi_s(z) \in$

 $\in A(R_1,R_2)$. Тогда для любой $f(z)\in A(R_1,R_2)$ имеем

$$Tf(z) = \sum_{k=-\infty}^{\infty} \sum_{s=0}^{n-1} f_{kn+s} Tz^{kn+s} = \sum_{k=-\infty}^{\infty} \sum_{s=0}^{n-1} f_{kn+s} \sum_{i=-\infty}^{\infty} \sum_{l=0}^{n-1} \varphi_{(i-k)\,n+l,s} z^{in+l} =$$

$$= \sum_{i=-\infty}^{\infty} \sum_{l=0}^{n-1} \sum_{s=0}^{n-1} \varphi_{in+l,s} z^{in+l-s} \left(\sum_{k=-\infty}^{\infty} f_{kn+s} z^{kn+s} \right) = \sum_{m=-\infty}^{\infty} \sum_{s=0}^{n-1} \varphi_{m,s} U^{m-s} A_s f(z).$$

Итак, необходимость доказана, а достаточность очевидна.

На основании этой теоремы уже можно дать описание полной группы изоморфизмов пространства $A(R_1,R_2)$, перестановочных с U^n . С этой целью введем в рассмотрение функции

$$\Phi_{l,s}(z) = z^{-l} A_l \varphi_s(z), \quad l, s = 0, 1, \dots, n-1.$$
 (6)

Заметим далее, что если линейный непрерывный оператор существует, то его матрица также характеризуется соответствующими соотношениями (4), он имеет вид типа (5) и его характеристические функции $\psi_s(s)$ принадлежат $A(R_1,R_2)$. Кроме того, условия $TT^{-1}=E$ и $T^{-1}T=E$ (E — оператор тождественного преобразования) можно записать в эквивалентных им матричных формах:

$$\sum_{j=-\infty}^{\infty} \sum_{p=0}^{n-1} \varphi_{in+l,p} \psi_{(k-j)n+p,s} = \delta_{l,s}, \quad \sum_{j=-\infty}^{\infty} \sum_{p=0}^{n-1} \psi_{jn+l,p} \varphi_{(k-j)n+p,s} = \delta_{l,s}, \quad (7)$$

 $l, s = 0, 1, \ldots, n-1; k = 0, \pm 1, \ldots; \delta_{l, s}$ — символ Кронекера. Соотношения же (7), очевидно, равносильны следующим:

$$\sum_{p=0}^{n-1} \Phi_{l,p}(z) \cdot \Psi_{p,s}(z) = \sum_{p=0}^{n-1} \Psi_{l,p} \Phi_{p,s}(z) = \delta_{l,s},$$
 (8)

где $\Psi_{p,s} = z^{-p} A_p \psi_s(z)$.

Следовательно, если T — изоморфизм $A(R_1, R_2)$, перестановочный с оператором U^n , то, как видно из (8), должно также выполняться условие

$$\det \|\Phi_{l,p}(z)\|_{l,p}^{n-4} \neq 0 \quad \text{при } R_1 < \|z\| < R_2.$$
(9)

Проводя аналогичные рассуждения в обратном порядке, мы убеждаем-

T е о р е м а 2 2. Для того чтобы оператор T был изоморфизмом пространства $A(R_1,R_2)$, перестановочным с U^{π} , необходимо и достаточно, чтобы он имел вид (5), его характеристические функции принадлежали $A(R_1,R_2)$ и выполнялось условие (9).

Теперь мы уже можем полностью охарактеризовать те условия, при которых система (1) образует базис в $A(R_1, R_2)$.

Теорема 3. Для того чтобы система (1) образовала квазистепенной базис пространства $A(R_1, R_2)$, необходимо и достаточно, чтобы функция

$$\det \|z^{-q}A_{\sigma}\Phi_{s}(z)\|_{\sigma,s}^{n-1} = 0$$

не имела в кольце $K(R_1 < |z| < R_2)$ нулей.

Замечание 2. Условия базисности (1) получены нами в предположении, что $\phi_s(z) = Tz^s$, $0 \le s \le n-1$, где T — искомый изоморфизм. Легко усмотреть, что теорема 3 имеет место и в том случае, если требовать

выполнения соотношений $\varphi_s(z) = Tz^{m+s}, \ 0 \le s \le n-1,$ при некотором целом m.

 Π р и м е р. Π усть n=2, $\phi_0(z)=\exp z$ и $\phi_1(z)=z\exp{(-z)}$. B этом случае

 $A_0 f(z) = \frac{f(z) + f(-z)}{2}, \quad A_1 f(z) = \frac{f(z) - f(-z)}{2}$

для любой функции $f(z) \in A(R_1,R_2)$ и условие $\det \| ... \| \neq 0$ равносильно тому, что $e^{2z} + e^{-2z} \neq 0$ в кольце. Корнями уравнения $e^{2z} + e^{-2z} = 0$ являются точки $z = \pi i/4 + l\pi i/2$, $l = 0, \pm 1, \ldots$ Так как центр кольца находится в начале координат, то точки $\pi i/4 + l\pi i/2$ и $\pi/4 + l\pi/4$ могут принадлежать ему лишь одновременно.

Следовательно, система $\{z^k \exp{[(-1)^k z]}\}_{k=-\infty}^{\infty}$ образует в $A(R_1, R_2)$ квазистепенной базис тогда и только тогда, когда кольцо $K(R_1 < |z| < R_2)$

не содержит ни одной из точек $\pi/4 + l\pi/2$, $l = 0, \pm 1, \dots$ (см. (3)).

Институт математики и механики Академии наук АзербССР Баку Поступило 20 IV 1973

Черновицкий государственный университет

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. Г. Хапланов, ДАН, 80, № 2, 177 (1951). ² К. М. Фишман, ДАН, 127, № 1 (1959). ³ И. И. Ибрагимов, Изв. АН СССР, сер. матем., № 5—6, 553 (1939). ⁴ Н. И. Нагнибида, Сборн. Теория функций, функциональный анализ и их приложения, Харьков, в. 13, 63 (1971). ⁵ И. И. Ибрагимов, Методы интерполяции функций и некоторые их применения, «Наука», 1971.