УДК 532.5.031

ГИДРОМЕХАНИКА

в. к. келринский

О ПОДВОДНОМ ВЗРЫВЕ ВБЛИЗИ СВОБОДНОЙ ПОВЕРХНОСТИ

(Представлено академиком М. А. Лаврентьевым 29 XII 1972)

Подводный взрыв заряда в.в. вблизи свободной поверхности, как известно (¹), сопровождается появлением так называемых султанов — направленных выбросов жидкости. Рассмотрим некоторые математические модели этого явления (плоский случай) в постановке М. А. Лаврентьева в рамках идеальной несжимаемой жидкости. Из опубликованных по этому во-

просу работ следует отметить (2).

Пусть нижнюю полуплоскость $z \le 0$ занимает идеальная несжимаемая жидкость, в которой на расстоянии h от свободной поверхности $\zeta(t)$ имеется газовая полость R(t). Давление на $\zeta(t)$ постоянно и равно атмосферному p_a , на R(t) меняется по адиабатическому закону $p(t) = p_0 (a/a_0)^{-2\gamma}$, где $\gamma = 3$. Движение жидкости потенциально: $\bar{v} = -\operatorname{grad} \varphi$, потенциал скорости удовлетворяет условию $\varphi \to 0$ на бесконечности, уравнению Лапласа $\Delta \varphi = 0$ и интегралу Коши — Лагранжа

для
$$\zeta(t) = \partial \varphi / \partial t - \frac{1}{2} (\nabla \varphi)^2 = 0,$$

для $R(t) = \partial \varphi / \partial t - \frac{1}{2} (\nabla \varphi)^2 = (p(t) - p_a) / \rho_0.$ (1)

Решение осуществляется путем комбинации метода ЭГДА — для решения уравнения Лапласа — и интегралов Коши — Лагранжа и сводится к

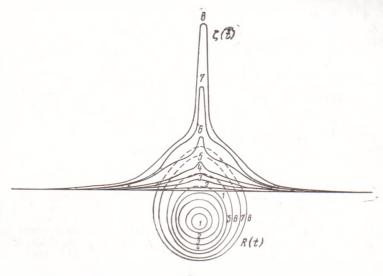


Рис. 1

определению в каждый момент времени распределения значений потенциала скорости и их производных на границах ξ и R. Для первого момента времени Δt_0 , выбираемого так, чтобы перемещение границы полости R(t) было несущественным, принимаем $\xi(\Delta t_0)$ — плоскость z=0, $R(\Delta t_0)$ — цилиндрическая полость радиуса a_0 (радиус шнурового заряда), $p=p_0$ оп-

ределяется, например, в предположении мгновенности детонации по всему объему в.в., причем на ξ v=0, $\varphi_{\rm r}=0$, на R v=0, $p=p_{\rm 0}$, $\varphi_{\rm r}=\frac{p_{\rm 0}}{\rho_{\rm 0}}$ $\Delta t_{\rm 0}$ (из (1)).

Связь гидродинамического потенциала φ_r с электрическим φ_s выражается различным для каждого момента времени масштабным коэффициентом. Задание граничных значений электрических аналогов гидродинамического потенциала (и их нормальных производных) на электропроводной бумаге позволяет для данного момента времени построить линии тока и определить градиент φ_s для любой точки на ξ и R, а значит, и распределение гидродинамических скоростей на обеих границах. Тогда для следующего шага по времени Δt_s можно найти новые формы границ $\xi(t)$ и R(t), из (1) — новое распределение φ_r на них и так далее.

На рис. 1 для $a_0=1.5$ см, h=6 см, $p_0=4\cdot 10^{10}$ г/(см·сек²) показано развитие во времени — соответственно 0; 2,7; 5,8; 87; 127; 208; 308; 408 µ сек. — свободной поверхности $\zeta(t)$ и газовой полости R(t). Анализ результатов расчета показал, что в начальные моменты времени часть жидкости над полостью получает большие скорости с максимумом на оси симметрии и отрицательным градиентом вдоль свободной поверхности. В дальнейшем, получив такой импульс, жидкость движется по инерции — давление в газовой полости быстро падает, граница R(t) тормозится и вытя-

гивается вверх, образуя высокоскоростную струю.

Этот эффект моделируется неустановившимся движением жидкости, получившей импульс в результате движения твердого цилиндра радиуса R_0 , который в момент t=0 находился в жидкости на расстоянии $h>R_0$

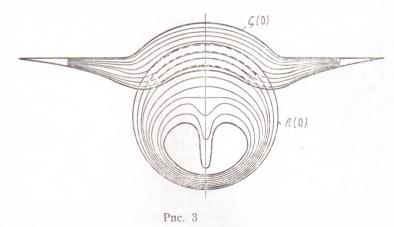
от свободной поверхности и получил по направлению нормали к ней мгновенно скорость v_0 . Распределение потенциала вдоль границы цилиндра известно-задача эквивалентна задаче обтекания однородным потоком диполя. При этом вблизи свободной поверхности диполь создает картину распределения эквилотенциальных линий и линий тока, аналогичную случаю с источником. При $t=t_0$ цилиндр мгновенно останавливается, жидкость движется по инерции, вытягиваясь в струю. На рис. 2 для $v_0 =$ $=10^{3}$ cm/cek, h=7 cm, $R_{0}=$ = 5 см, $t_0 = 7 \cdot 10^{-3}$ сек. приведены результаты расчета изменения во времени формы свободной поверхности соответственно для 10^{-2} ; $1.2 \cdot 10^{-2}$; $1,4\cdot 10^{-2}$; $1,6\cdot 10^{-2}$ cek.

Остановимся на некоторых явлениях, сопровождающих последующие стадии подводного взрыва вблизи

PHC. 2

свободной поверхности. Пусть свободная поверхность в момент t=0 имеет форму $\zeta(0)$, изображенную на рис. 3, давление на $\zeta(t)$ постоянно и равно атмосферному. В жидкости имеется цилиндрическая полость R(0) радпуса a_0 с давлением внутри p(t)=0, центр которой расположен на глубине h

от уровня свободной поверхности жидкости на бесконечности, т. е. в некоторой «предельной» постановке — правильная форма полости, отсутствие газа внутри нее — рассматривается процесс захлопывания полости с продуктами детонации. Для $a_0 = 16$ см, h = 13 см и моментов времени 0; 6; 9; 12; 15; 18; 21; 24; 27; 30 мсек на рис. 3 показан процесс захлопывания, сопровождающийся образованием кумулятивной струи. Кумулятивная



струя разделяет газовую полость на две, которые в реальном случае захлопнутся до некоторого минимального размера с давлением газа внутри $p_0 \gg p_a$. Таким образом приходим к следующей качественной задаче, аналогичной залаче (1).

В идеальной несжимаемой невесомой жидкости в момент t=0 на глубине h от свободной поверхности $\zeta(0)$ (рис. 4) находятся две газовые полости R(0) с давлением p_0 , симметрично расположенные относительно оси.

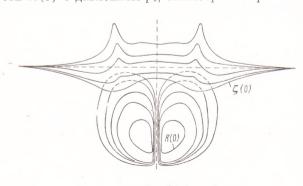


Рис. 4

Результаты решения для исходных линейных размеров, идентичных данным рис. 3 при t = 30 мсек, и давления $p_0 = 10^{10} \text{ r/(см}$ ·сек2) приведены на рис. 4. последовательность гле форм свободной поверхности и газовых полостей соответствует моментам времени 0; 110; 130; 160; 190 дсек. Оказалось, что существенное смещение в сторону от оси симметрии максимума скорости час-

тиц на свободной поверхности и на границах газовых полостей и наличие наклонной в начальный момент времени свободной поверхности приводит к образованию боковых султанов на стадии второго расширения газовой полости с продуктами детонации.

В заключение автор выражает глубокую признательность акад. М. А. Лаврентьеву за постоянный интерес к работе и полезные дискуссии.

Институт гидродинамики Сибирского отделения Академии наук СССР Новосибирск

Поступило 14 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Р. Коул, Подводные варывы, ИЛ, 1950. ² Л. В. Овсянников, Сборн. Некоторые проблемы математики и механики, посвященный семидесятилетию акад. М. А. Лаврентьева, «Наука», 1970, стр. 209.