УДК 519.46

MATEMATUKA

А. А. КИРИЛЛОВ

ПРЕДСТАВЛЕНИЯ БЕСКОНЕЧНОМЕРНОЙ УНИТАРНОЙ ГРУППЫ

(Представлено академиком И.Г. Петровским 4 І 1973)

Классическая теорема Г. Вейля утверждает, что все неприводимые представления унитарной группы U(n) реализуются в тензорах, удовлетворяющих определенным условиям симметрии. Мы покажем, что в бесконечномерном случае имеет место та же теорема, если бесконечномерным аналогом групп U(n) считать группу U_0 всех унитарных операторов, сравнимых с единицей по модулю компактных. Аналогичные утверждения справедливы для бесконечномерной ортогональной и симплектической грунпы. Формулировки этих утверждений подсказываются методом орбит и были высказаны в качестве гипотез в курсе лекций автора по теорин представлений бесконечномерных групп Ли (МГУ, 1966/1970 гг.).

1. Пусть L- бесконечномерное сепарабельное комплексное гильбертово пространство, U — группа всех унитарных операторов в L, снабженная топологией нормы, $\tilde{\mathrm{U}}(n)$ — подгруппа операторов, оставляющих на месте все базисные векторы, начиная с (n+1)-го, $U(\infty)$ — объединение $\mathrm{U}(n)$ по всем n и, наконец, U_0 — замыкание $\mathrm{U}(\infty)$ в U . Ясно, что U_0 состоит из всех унитарных операторов вида 1 + a, где a — компактный опе-

ратор.

 $ar{ ext{M}}$ ы будем называть тензорами типа $(k,\ l)$ над L элементы гильбертова тензорного произведения

$$T^{k,l} = \underbrace{L \otimes \ldots \otimes L}_{k \text{ сомножителей}} \otimes \underbrace{L \otimes \ldots \otimes \overline{L}}_{l \text{ сомножителей}},$$

где \overline{L} — пространство, сопряженное к L. Группа U действует в $T^{k,l}$ по формуле

$$\rho^{k,l}(u)\,\xi_1\otimes\ldots\otimes\xi_k\otimes\eta_1\otimes\ldots\otimes\eta_l=$$

$$=u\xi_1\otimes\ldots\otimes u\xi_k\otimes \overline{u}\,\eta_1\otimes\ldots\otimes\overline{u}\,\eta_l.$$

Кроме того, в $T^{h,\;l}$ определено представление A группы перестановок $S(k) \times S(l)$:

$$A(s, \sigma) \xi_1 \otimes \ldots \otimes \xi_h \otimes \eta_1 \otimes \ldots \otimes \eta_l = \xi_{s(1)} \otimes \ldots \otimes \xi_{n(h)} \otimes \eta_{\sigma(1)} \otimes \ldots \otimes \eta_{\sigma(l)}.$$

 Π емма 1. Всякий оператор в $T^{k,l}$, перестановочный с операторами $\rho^{k,l}(u), u \in \mathbb{U}(\infty)$, является линейной комбинацией операторов $A(s,\sigma)$, $s \in S(k), \sigma \in S(l)$.

Отметим, что в конечномерном случае это утверждение неверно.

Обозначим через S(k) совокупность классов эквивалентности неприводимых представлений группы S(k) и через S — объединение $\widehat{S}(k)$ по всем к. Из леммы 1 стандартными рассуждениями (см., например, (2)) выво-

Теорема 1. Существует семейство унитарных представлений ρ_{π} , $\pi \in \widehat{S}$, группы U, обладающих свойствами:

1) представление $\rho^{k,l} \times A$ группы $\mathbb{U} \times S(k) \times S(l)$ в $T^{k,l}$ допускает

$$ho^{k,\,l} imes A = \sum_{\pi_1\in \widehat{S(k)}, \pi_2\in \widehat{S(l)}}
ho_{\pi_1} \otimes ar{
ho}_{\pi_2} imes \pi_1 imes \pi_2,$$

 $z\partial e\ \overline{
ho}$ означает представление, комплексно сопряженное с ho;

 $\dot{\mathbf{z}}$) ограничения представлений $\rho_{\pi_1} \otimes \bar{\rho}_{\pi_2}$ на $\mathbf{U}(\infty)$ неприводимы и попарно неэквивалентны для всех π_1 , $\pi_2 \subseteq \hat{S}$;

3) имеет место формула

$$\rho_{\pi_1} \otimes \rho_{\pi_2} = \sum_{\pi \in \widehat{S(k+l)}} c^{\pi}_{\pi_1, \pi_2} \cdot \rho_{\pi}, \quad \pi_1 \in \widehat{S(k)}, \quad \pi_2 \in \widehat{S(l)},$$

где коәффициент $c^\pi_{\pi_1,\pi_2}$ равен кратности вхождения $\pi_1 imes \pi_2$ в разложе-

ние ограничения π на $S(k) \times S(l) \subset S(k+l)$.

4) в пространстве представления ρ_{π} существует естественный аналог базиса Гельфанда — Цетлина ($^{\circ}$); векторы этого базиса нумеруются наборами $\{m_{ij}\}$, $i, j=1,2,\ldots$, целых неотрицательных чисел, невозрастающих по каждому индексу, причем лишь конечное число элементов набора отлично от нуля.

2. Основной результат настоящей заметки —

T е о р е м а $\dot{2}$. \ddot{B} се унитарные неприводимые представления группы U_0 имеют вид $\rho_{\pi_1} \otimes \rho_{\pi_2}$, π_1 , $\pi_2 \subseteq \dot{S}$.

В сочетании с теоремой 1 это утверждение позволяет полностью вычислить кольцо Гротендика Г для категории унитарных представлений груп-

пы U₀. А именно, справедлива

T е о р е м а 3. Кольцо Γ изоморфно кольцу целочисленных многочленов от счетного набора переменных. В качестве образующих можно взять классы представлений, реализующихся в кососимметрических тензорах типа (k,0) и (0,k).

Доказательство теоремы 2 основано на следующем факте.

Лемма 2. Пусть ρ — унитарное представление группы $\mathbf{U}(\infty)$ в пространстве H, не содержащем инвариантных векторов. Для любого $\varepsilon > 0$ и любого $\xi \equiv H$ существует такое натуральное n и такая вероятностная мера μ на множестве $W_{h,\,\varepsilon} = \{u \in \mathbf{U}(h), \, \|1-u\| \leqslant \varepsilon\}, \,$ что $\|\rho(\mu)\xi\| \leqslant$

$$\geqslant (1 - \epsilon^2 / 6) \|\xi\|$$
, где $\rho(\mu) = \int \rho(u) \ d\mu(u)$.

Отсюда без труда выводится

 Π е м м а 3. Π усть V(n) — централиватор U(n) в U_0 . B любом унитарном представлении U_0 есть вектор, инвариантный относительно V(n) при достаточно большом n.

Вывод теоремы 2 из леммы 3 использует явный вид сферических функ-

ций на группе \mathbf{U}_0 относительно подгруппы V(n).

3. Пусть теперь L — сепарабельное бесконечномерное гильбертово пространство над полем R вещественных чисел или над телом H кватернионов. По аналогии с группами U, U(n), $U(\infty)$, U_0 определяются в вещественном случае ортогональные группы O, O(n), $O(\infty)$, O_0 , а в кватернионном случае — симплектические группы Sp, Sp(n), $Sp(\infty)$, Sp_0 . Связную компоненту единицы в группе O_0 мы обозначим SO_0 .

Теорема 4. Все унитарные неприводимые представления групп SO_0 и Sp_0 исчерпываются представлениями типа ρ_{π} , $\pi \in \hat{S}$, и реализуются в тензорах над исходным пространством L. Представления ρ_{π} и $\bar{\rho}_{\pi}$ эквивалентны. Для тензорного произведения ρ_{π_0} и ρ_{π_0} справедливо утверждение 3)

теоремы 1.

4. Сравним полученные результаты с тем, что дают в этом случае эври-

стические правила метода орбит (см. $(^2)$, § 15).

Алгеброй Ли рассматриваемой группы G (= U_0 , SO_0 или Sp_0) является пространство $\mathfrak g$ компактных эрмитовых операторов в L. Двойственное про-

странство \mathfrak{g}^* отождествляется с пространством эрмитовых ядерных операторов, а действие G в \mathfrak{g}^* имеет вид

$$x \to gxg^{-1}$$
, $x \in \mathfrak{g}^*$, $g \in G$.

Условие целочисленностси означает, что все собственные значения оператора x — целые числа. Так как x — ядерный оператор, это возможно, лишь когда x имеет конечный ранг. Соответствующие орбиты нумеруются в ортогональном и симплектическом случаях конечными неупорядоченными наборами натуральных чисел, а в унитарном случае — парами таких наборов. Ясно, что между этими орбитами и построенными выше представлениями существует естественное взаимно однозначное соответствие. Заметим, однако, что это соответствие носит иной характер, чем в конечномерном случае (ср. (4), § 3).

Следует также сказать, что рассмотрение вместо U_0 , SO_0 , Sp_0 больших групп U, SO, Sp (или меньших групп $U(\infty)$, $SO(\infty)$, $Sp(\infty)$ с топологией индуктивного предела) приводит к резкому усложнению структуры множества орбит. Это согласуется с тем фактом, что указанные группы не принадлежат типу 1 в смысле Неймана и аналог теоремы Γ . Вейля для них

не имеет места *.

Московский государственный университет им. М. В. Ломоносова

Поступило 16 I 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Вейль, Классические группы, их варианты и представления, М., 1947. ² А. А. Кириллов, Элементы теории представлений, «Наука», 1972. ³ И. М. Гельфанд, Р. А. Минлос, З. Я. Шапиро, Представления группы вращений и группы Лоренца, М., 1958. ⁴ А. А. Кириллов, Функц. анализ, 2, № 2, 40 (1968). ⁵ I. E. Segal, Proc. Am. Math. Soc. 8, № 1, 197 (1957).

^{*} При жестком дополнительном условии положительности дифференциала И. Сигал показал в (5), что все неприводимые унитарные представления группы U имеют вид ρ_{π} , $\pi \in \widehat{S}$.