УДК 517.91

MATEMATUKA

К. С. СИБИРСКИЙ, И. А. ЧИРКОВА

К ТЕОРИИ РАЗРЫВНЫХ ДИСПЕРСНЫХ ДИНАМИЧЕСКИХ СИСТЕМ

(Представлено академиком И.Г. Петровским 25 XII 1972)

1°. Во многих прикладных задачах встречаются системы с толчками, т. е. с разрывами первого рода у решений. В работах (1-3) изучены системы с толчками в заданные моменты времени. В последнее время поняцился целый ряд работ, посвященных исследованию систем, в которых толчки происходят при достижении движущейся точкой заданного множества в фазовом пространстве. Т. Павлидис (4) рассматривает такие системы в произвольных метрических пространствах, называя их разрывными динамическими системами (р.д.с.). Строгое определение и основные свойства р.д.с. с толчками на заданном множестве фазового пространства даны в (5). Развитию математической теории импульсных систем посвящены также работы (6,7).

Во всех указанных выше работах речь идет о системах с единственностью. В то же время теперь уже имеется хорошо разработанная теория непрерывных дисперсных динамических систем (⁸⁻¹⁵), обобщающая теорию дифференциальных уравнений без предположения единственности.

В данной работе рассматриваются некоторые вопросы общей теории разрывных дисперсных динамических систем (р.д.д.с.) с толчками на заданном множестве фазового пространства. При выполнении некоторых условий на р.д.д.с. удалось перенести многие основные понятия и результаты топологической теории динамических систем.

2°. Поскольку аксиоматика дисперсных динамических систем (д.д.с.) в работах разных авторов неодинакова, приведем определение д.д.с. и ее

движении

Пусть R — метрическое пространство с метрикой ρ , I^+ — множество всех неотрицательных чисел, а $S(p,\delta)=\{q\in R\colon \rho(q,p)<\delta\}$. Для любых подмножеств $A\subseteq R$ п $B\subseteq R$ положим

$$\beta(A, B) = \sup \{ \rho(p, B) \colon p \in A \}, \quad \alpha(A, B) = \max \{ \beta(A, B), \beta(B, A) \}.$$

Пусть f — отображение, ставящее в соответствие каждой точке $p \in R$ и каждому элементу $t \in I^+$ непустой компакт $f(p,t) \subseteq R$. Положим

$$f(A, K) = \bigcup_{p \in A, t \in K} f(p, t), A \subseteq R, K \subseteq I^+.$$

Совокуппость $[R, I^+, f]$ называется д. д. с., если выполнены следующие условия:

1) f(p,0)=p для любой точки $p\in R$ (аксиома тождества).

2) $f(f(p,t_1),t_2)=f(p,t_1+t_2)$ для любых $p\in R,\ t_1,t_2\in I^+$ (аксиома по-

лугруппы).

3) Каковы бы ни были точка $p \in R$, числа $\varepsilon > 0$ и $t_0 \in I^+$, существует такое число $\delta > 0$, что для всех точек $q \in S(p, \delta)$ и всех $t \in I^+$, удовлетворяющих условию $|t - t_0| < \delta$, имеет место неравенство $\beta(f(q, t), f(p, t_0)) < \varepsilon$ (аксиома непрерывности).

Иногда аксиома 3 заменяется более сильным условием

3') Для любой точки $p \in R$, чисел $\varepsilon > 0$ и $t_0 \in I^+$ существует такое число $\delta > 0$, что для всех точек $q \in S(p,\delta)$ и всех $t \in I^+$, удовлетворяющих

условию $|t-t_0| < \delta$, имеет место неравенство $\alpha(f(q,t),f(p,t_0)) < \varepsilon$ (ак-

сиома непрерывности).

Однозначное непрерывное отображение $q = \varphi_p(t)$ действительной полупрямой I^+ в пространство R называется движением, выходящим из точки р, если выполнены условия

1) $\varphi_p(0) = p$;

2) $\varphi_p(t_2) \equiv f(\varphi_p(t_1), t_2 - t_1)$ при $0 \le t_1 < t_2$.

Множество $\varphi_p(I^+) = \{\varphi_p(t): t \in I^+\}$ называется траекторией движения $\varphi_p(t)$. Множество всех движений $\varphi_p\colon I^+\to R$, выходящих из точки p, обозначим через $\Phi(p)$. Тогда $f(p,I^+)=\bigcup\limits_{\varphi_p\in\Phi(p)}\varphi_p(I^+)$.

 3° . Пусть Ω — некоторое открытое множество пространства R, а Γ его граница. Для каждой точки $p \in \Omega$ и каждого движения φ_p д.дс. f(p,t)положим

$$\tau(\varphi_p) = \sup \{t: \varphi_p([0,t)) \subseteq \Omega\}.$$

Совокупность всех точек $p \in \Omega$, для которых $\tau(\varphi_p) < +\infty$ хотя бы при одном $\Phi_p = \Phi(p)$, обозначим через Ω^* . Если $p = \Omega^*$, то обозначим

$$\Phi^*(p) = \{ \varphi_p : \tau(\varphi_p) < +\infty \}, \quad \Phi^* = \bigcup_{p \in \Omega^*} \Phi^*(p).$$

Пусть Q — подмножество Ω , F — отображение (вообще говоря, многозначное) границы Γ на Q, а $\varphi_p \in \Phi^*$. Определим функцию π равенством $\pi(\varphi_p) = F(\varphi_p(\tau(\varphi_p))).$

Допустим, что существует такое число a > 0, что $\tau(\phi_p) \ge a$, каковы бы

ни были точка $p \in Q$ и движение $\varphi_p \in \Phi(p)$.

Пусть $p_0 = p$, $p_1 \in \pi(\phi_p)$, а $\phi_{p_1} \in \Phi(p_1)$. Если $\phi_{p_1} \in \Phi^*$, то рассмотрим произвольную точку $p_2 \in \pi(\phi_{p_1})$ и движение $\phi_{p_2} \in \Phi(p_2)$. Продолжая этот процесс выбора точек и движений, получим некоторую конечную или бесконечную последовательность движений $\{\varphi_{p_n}\}, n=0,1,\ldots,N\leqslant +\infty,$

так что $\sum_{i=0}^{\infty} \tau\left(\phi_{p_i}\right) = +\infty$. Для всякого $t \geq 0$ найдется такое минимальное

целое
$$k\geqslant 0$$
, что $t<\sum_{i=0}^k au\left(\phi_{p_i}\right).$

Определим разрывное движение ψ_p , выходящее из точки p, полагая

$$\psi_{p}(t) = \varphi_{p_{k}}\left(t - \sum_{i=0}^{k-1} \tau\left(\varphi_{p_{i}}\right)\right), \quad \sum_{i=0}^{-1} = 0.$$

Введем обозначения:

$$\Psi(p) = \{\psi_p\}; \quad n(\psi_p) = \sup\{k: \exists p_k\}, \quad 0 \leq n(\psi_p) \leq +\infty.$$

Очевидно, если $m \equiv n(\psi_p) < +\infty$, то $\tau(\phi_{pm}) = +\infty$, а если m = 0, то $\psi_p \in \Phi(p)$. Множество $\psi_p(I^+) = \{\psi_p(t) \colon t \in I^+\}$ называется траекторией разрывного движения фр.

Разрывной дисперсной динамической системой будем называть функ-

цию

$$h(p,t) = \{\psi_p(t) \colon \psi_p \in \Psi(p)\},\,$$

определенную при всех $p \in \Omega$, $t \in I^+$.

При любых $A \subseteq \Omega$, $K \subseteq I^+$ положим $h(A, K) = \bigcup_{r \in A, t \in K} h(r, t)$. Множество $h(p, I^+)$ будем называть воронкой р.д.д.с. с вершиной

в точке p, а его замыкание в Ω обозначим через Σ_p .

4°. Пусть задана многозначная функция ор, определенная на некотором множестве $A \subseteq R$ со значениями в R. Скажем, что σp непрерывна в точке $p \subseteq A$, если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что, какова

$$\alpha(\sigma q, \sigma p) < \varepsilon. \tag{1}$$

Функцию ор назовем непрерывной, если она непрерывна в каждой точке ее области определения. Скажем, что функция ор равномерно непрерывна, если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что, каковы бы ни были точки q и r из области ее определения с $\rho(q,r) < \delta$, имеет место неравенство (1).

Для любого $p \subseteq \Omega^*$ обозначим

$$egin{aligned} \pi p &\equiv \pi^1 p = igcup_{\phi_p \in \Phi^*(p)} \pi\left(\phi_p
ight), \quad \pi^0 p = p, \ \pi^n p &= \pi\left(\pi^{n-1} p
ight) = igcup_{q \in \pi^{n-1} p} \pi q, \quad n = 2, \, 3, \ldots \end{aligned}$$

Легко видеть, что если функция πp непрерывна и обладает компактными в себе значениями, а множество $Q \subseteq \Omega^*$, то при всяком натуральном n функция $\pi^n p$ непрерывна и обладает компактными в себе значениями.

Будем говорить, что граница Γ обладает свойством притяжения, если для произвольного числа $\varepsilon > 0$ существует такое число $\delta > 0$, что если $\rho(p,\Gamma) < \delta$, $p \in \Omega$, то для любого движения $\varphi_p \in \Phi(p)$ число $\tau(\varphi_p) < \varepsilon$ и при всех $t \in [0, \tau(\varphi_p)]$

$$\rho(\varphi_p(t), \varphi_p(\tau(\varphi_p))) < \varepsilon.$$

Скажем, что выполнены условия W_1 , если функция π непрерывна, множество Ω^* открыто и для д.д.с. f(p,t) выполнена аксиома непрерывности.

Будем говорить, что выполнены условия W_2 , если функция F равномерно непрерывна, функция π непрерывна и обладает компактными значениями, множество $Q \subseteq \Omega^*$, граница Γ обладает свойством притяжения и для д.д.с. f(p,t) выполнена аксиома непрерывности.

Теорема 1. Если выполнены условия W_2 , то для точки $p \in \Omega$ и произвольных чисел $\varepsilon > 0$ и $T \in I^+$ существует такое число $\delta > 0$, что для любой точки $q \in S(p,\delta)$ и произвольного движения $\psi_p \in \Psi(q)$ существует такое движение $\psi_p \in \Psi(p)$, что для всякого $t^* \in [0,T]$ найдется момент времени $t_0 \in [t^*-\varepsilon,t^*+\varepsilon]$, для которого

$$\rho\left(\psi_q(t^*),\psi_p(t_0)\right) < \varepsilon. \tag{2}$$

Теорема 2. Если выполнены условия W_2 , то для точки $p \in \Omega$ и любых чисел $\varepsilon > 0$ и $T \in I^+$ найдется такое число $\delta > 0$, что, каковы бы ни были движение $\psi_p \in \Psi(p)$ и точка $q \in S(p, \delta)$, существует такое движение $\psi_q \in \Psi(q)$, что для всякого $t_0 \in [0, T]$ найдется момент времени $t^* \in [t_0 - \varepsilon, t_0 + \varepsilon]$, удовлетворяющий неравенству (2).

 5° . Множество $A \subseteq \Omega$ назовем инвариантным, если $h(A,t) \subseteq A$ при любом $t \geqslant 0$. Нетрудно показать, что любая воронка р.д.д.с. является

инвариантным множеством.

Tеорема 3. При выполнении условий W_1 замыкание инвариантного множества $A \subseteq \Omega$ инвариантно.

Следствие 1. При выполнении условий W_1 замыкание любой воронки р.д.д.с. является инвариантным множеством.

Точку q назовем динамически предельной для точки p, если для любых чисел $\varepsilon>0$ и T>0 найдется такой момент времени t>T, что $\rho(q,h(p,t))<\varepsilon$. Множество всех динамически предельных точек точки p обозначим через D_p и назовем динамически предельным множество в с T в T ом точки T . Легко видеть, что динамически предельное множество замкнуто.

Теорема 4. При выполнении условий W_1 динамически предельное множество инвариантно.

Точку p назовем устойчивой по Π уассону, если для любых $\varepsilon > 0$, q и $r \in h(p, I^+)$ существует такое $T \equiv T(\varepsilon, q, r)$, что

$$\rho(q, h(r, [0, T])) < \varepsilon. \tag{3}$$

Теорема 5. Для того чтобы точка р была устойчива по Пуассону, необходимо и достаточно, чтобы выполнялись следующие условия:

1) $D_p = \Sigma_p$; 2) $D_p = D_r \partial_r A$ ля любой точки $r \in h(p, I^+)$.

Непустое замкнутое в Ω инвариантное множество Σ назовем минимальным, если оно не содержит собственного замкнутого в Ω инвариантного подмножества. В дальнейшем под замкнутым множеством понимается множество замкнутное в Ω , а под замыканием множества подразумевается его замыкание в Ω .

Теорема 6. Если выполнены условия W_1 , то множество $\Sigma \subseteq \Omega$ будет минимальным тогда и только тогда, когда для любой точки $p \in \Sigma$ имеет

место равенство $\Sigma_p = \Sigma$.

T е o р e м a 7. E сли выполнены условия W_i , то все точки минималь-

ного множества Σ устойчивы по Пуассону.

6°. Точка p называется почти рекуррентной, если для любого числа $\varepsilon > 0$ и произвольной точки $q \in h(p, I^+)$ существует такое число $T \equiv T(\varepsilon, q)$, что для всякой точки $r \in h(p, I^+)$ выполнено условие (3).

Теорема 8. Если точка $p = \Omega^*$ почти рекуррентна, а множество Ω^* ткрыто, то найдется разрывное движение ψ_n , для которого $n(\psi_n) = \infty$.

открыто, то найдется разрывное движение ψ_p , для которого $n(\psi_p) = \infty$. Точка p называется рекуррентной, если для всякого числа $\varepsilon > 0$ существует такое $T(\varepsilon) > 0$, что для любых точек q, $r \in h(p, I^+)$ выполнено неравенство (3).

Tеорема 9. Eсли воронка $h(p, I^+)$ компактна в R, то из почти pe-

куррентности точки р следует ее рекуррентность.

Следующие теоремы являются обобщением известных теорем М. В. Бебутова и Дж. Д. Биркгофа (16) на случай р.д.д.с. В их доказательстве используются теоремы 1 и 2.

Теорема 10. Если выполнены условия W_2 , то в замыкании воронки рекуррентной (почти рекуррентной) точки все точки рекуррентны (почти

рекуррентны).

Tеорема 11. Eсли выполнены условия W_2 , то замыкание воронки

почти рекуррентной точки является минимальным множеством.

Теорема 12. Если выполнены условия W_2 , то всякая точка, воронка которой принадлежит минимальному компактному в R множеству, рекуррентна.

Институт математики с Вычислительным центром Академии наук МССР

Поступило 21 XI 1972

Кишпиевский политехнический институт им. С. Лазо

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Д. Мильман, А. Д. Мышкис, Сибирск. матем. журн., 1, № 2 (1960).
² А. Д. Мышкис, А. М. Самойленко, Матем. сборп., 74, № 2 (1967).
³ А. Халанай, Д. Векслер, Качественная теория импульсных систем, М., 1971.
⁴ Т. Рауіі і і қ. Ілfогт. and Control, № 9 (1966).
⁵ В. Ф. Рожко, Матем., исследования, Кишинев, 4, № 3 (1969); 5, № 1 и № 2 (1970); Дифференциальные уравнения, 8, № 11 (1972).
⁶ Б. С. Калитин, Тамже, 6, № 12 (1970); 7, № 3 (1971).
⁷ Н. А. Перестюк, Тр. сем. по матем. физике и пелинейн. колебаниям. Инст. матем. АН УССР, в. 3 (1969).
⁸ Е. А. Барбашин, ДАН, 41, № 4 (1943).
⁹ Е. А. Барбашин, Уч. зап. Московск. унив., 135, № 2 (1948).
¹⁰ Б. М. Будак, Тамже, 155, № 5 (1952).
¹¹ М. И. Минкевич, ДАН, 59, № 6 и 60, № 3 (1948).
¹² И. У. Бронштейн, ДАН, 144, № 5 (1962); 151, № 1 (1963).
¹³ Н. К. Чебан, Матем. исследования, Кишинев, 2, № 2 (1967); 3, № 1 (1968).
¹⁴ М. С. Изман, Дифференциальные уравнения, 5, № 7 (1969).
¹⁵ G. Р. Szegö, G. Ттессапі, Semigruppi di Transformationi Multivoche, Lecture Notes in Mathematics, 1969, р. 101.
¹⁶ К. С. Сибирский, Введение в топологическую динамику, Кишинев, 1970.