УДК 550.311

ГЕОФИЗИКА

Г. В. СИМАКОВ, М. А. ПОДУРЕЦ, Р. Ф. ТРУНИН

НОВЫЕ ДАННЫЕ О СЖИМАЕМОСТИ ОКИСЛОВ И ФТОРИДОВ И ГИПОТЕЗА ОБ ОДНОРОДНОМ СОСТАВЕ ЗЕМЛИ

(Представлено академиком Ю. Б. Харитоном 16 Х 1972)

В общей проблеме впутреннего строения Земли одним из основных является вопрос о составе Земного ядра. В последние годы здесь существенно упрочились позиции геофизиков, придерживающихся гипотезы о железо-пикелевом ядре нашей планеты. Решающую роль в этом сыграли эксперименты по ударному сжатию металлов, горных пород и минералов, проведенные в Советском Союзе в диапазоне давлений, существенно превосходящих давления $(P \ge 1.4 \text{ Mбар})$ внешпей границы ядра (1-7).

С другой стороны, альтернативная гипотеза Лодочникова — Рамзея, основанная на идее металлизации силикатов мантии при достижении критических давлений ($P \le 1,4$ Мбар) и утверждающая химически однородный состав планеты, опровергалась экспериментами по сжатию магнезиальных силикатов, а также окисных структур, характерных для нижней мантии Земли: ни в одном силикатном (или окисном) веществе при его сжатии в ударных волнах не было зафиксировано необходимых скачков плотностей, позволяющих интерпретировать геофизические зависимости с этой точки зреция. Более того, опубликованные в последнее время (7) результаты определения сжимаемости α -кварца и кварцита до рекордных давлений в \sim 7 Мбар в измерениях абсолютным методом (8) и до \sim 20 Мбар относительным способом не давали как будто повода говорить даже об «инерционности фазовых переходов в горных породах», их «неподатливости» и т. п.

Однако пеобходимо подчеркнуть, что в исследованиях сжимаемости горных пород и минералов была по крайней мере одна общая некорректность: исследовались либо сложные силикатные структуры (типа оливинов — пироксенов), либо окислы, из которых главный строительный материал мантии — кремнезем брался в исходной структуре α-кварца, а не рутила (стиповерит), как это имеет место (9-11) в глубинах Земли.

С этой точки зрения представляло особый интерес изучение веществ,

кристаллизующихся в рутиловой структуре.

- В (12) было показано, что кривая сжатия рутила ${\rm TiO_2}$ (естественные монокристаллы) обладает необычными свойствами: до критических даелений ($P\approx 1$ Мбар) динамический эксперимент фиксирует состояния, характеризуемые большим изменением плотности (максимальная зафиксированная величина сжатия при этих давлениях $\rho_{{\rm TiO_2}}\approx 6.5~{\rm r/cm^3}$, т.е. плотность рутила увеличивалась в 1,55 раза по сравнению с исходной); выше критической точки кривая сжатия претерпевает резкий излом, свидетельствующий о переходе рутила в новую высокоплотную фазу с плотностью при нормальных условиях $\rho_0\approx 6.2~{\rm r/cm^3}$. В динамических опытах участок адиабаты высокоплотной фазы характеризуется большой жесткостью (малой сжимаемостью).
- B (12) рассматривается возможность превращения TiO_2 в фазу типа интерметаллического соединения $MgCu_2$ с одновременной сменой ионноковалентного характера связи на металлический. По крайней мере с равными основаниями возможно трактовать этот переход (13) в соответст-

впи с правилом Гольдшмидта — и как преобразование решетки рутила (координационное число, к.ч. 6) в более плотно упакованную, энергетически выгодную при этих давлениях решетку типа флюорита (CaF₂, к.ч. 8). Как следует из (12), подобный же — качественный и количественный — характер имеет и кривая сжатия флюорита, фазовый переход в котором должен быть интерпретпрован уже как преобразование в плотнейшую структуру типа MgCu₂ (к.ч. 12) или близкую к ней по упаковке.

Естественно, что рассмотренные фазовые изменения, соответствующие чрезвычайно большим суммарным скачкам плотностей ($\Delta \rho \sim 7-8 \text{ г/см}^3$) у системы $\text{TiO}_2 \rightarrow \text{CaF}_2 \rightarrow \text{MgCu}_2$, давали основание предполагать, что

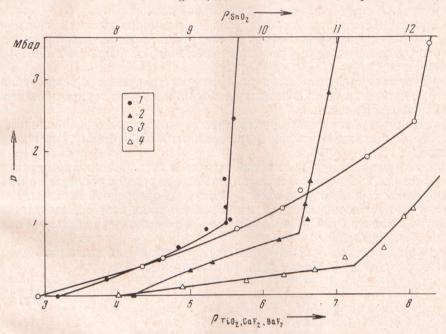


Рис. 1. Кривые удариого сжатия окислов и фторидов: 1- CaF₂, 2- TiO₂, 3- SnO₂, 4- BaF₂; 1, 2- данные (12), 3, 4- наши данные

близкая к этому ситуация будет иметь место и при сжатии стиповерита. К сожалению, мы не располагали необходимым для исследования сжимаемости количеством этого минерала, поэтому было решено провести исследование динамической сжимаемости других веществ, кристаллизующихся при нормальных условиях в структуре рутила и флюорита.

В работе исследовались касситерит SnO2 (естественные монокристаллы, рутиловая структура) и фторид бария ВаF₂ (искусственные монокристаллы оптической чистоты, флюоритовая решетка). Измерения ударной сжимаемости веществ проводились по методу отражения (8), результаты псследований приводятся на рис. 1 в сопоставлении с данными по TiO₂ и Са Г2 из (12). Видно, что качественно все кривые сжатия подобны и характеризуются особенностями, о которых говорилось выше (большая сжимаемость высокоплотной фазы Ва F₂, возможно, объясняется отсутствием в его составе примесей). Полученные результаты дают основание считать, что с достаточной вероятностью стиповерит, плотнейшая рутилоподобная модификация кремнезема ($\rho_0 = 4.28 \text{ г/см}^3$), отпюдь пе является последним звеном в ряду фазовых изменений SiO_2 и (P-T)-условия, характеризующие зону нижней мантии Земли, не противоречат возможности образования у него более плотных структур. По аналогии с последовательностью превращений: структура рутила (к.ч. 6), $\rho_0 = 4{,}28 \text{ г/см}^3 \rightarrow \text{структура}$ флюорита (к.ч. 8), $\rho_0 \approx 6 \text{ г/см}^3 \rightarrow \text{структура MgCu}_2$ (к.ч. 12), $\rho_0 \approx 10 \text{ г/см}^3$ конечная плотность кремнезема может иметь величину $\rho_0 \approx 10 \text{ г/см}^3$. Это

делает реальной возможность интерпретации химического состава ядра Земли (по крайней мере внешнего) на основе гипотезы Лодочникова — Рамзея (имеющей, вообще говоря, целый ряд преимуществ и с точки зре-

ния планетной космогонии (14)).

Конечно, подобные сверхилотные фазы кремнезема должны удовлетворять и ряду других геофизических данных, в частности сейсмическим скоростям звука в ядре, а также требованию их металлизации. Последнее не является, по-видимому, большой трудностью, поскольку интерпретация данных в (12), а также недавно опубликованные результаты Каваи и Машизуки (15), обнаруживших экспериментально при $P \sim 2,2$ Мбар металлизацию рутила, свидетельствуют о ее реальной возможности.

Сложнее обстоит дело с сопоставлением газодинамических и сейсмиче-

ских скоростей звука. Это связано со следующими обстоятельствами:

1) отсутствие строгого уравнения состояния высокоплотных фаз окси-

дов и фторидов;

2) отсутствие уверенпости в том, что регистрируемые в ударно-волновых экспериментах высокоплотные фазы соответствуют термодинамически устойчивым состояниям.

Ввиду этого в настоящее время строгое сопоставление сейсмических и газодинамических скоростей звука является, по-видимому, преждевре-

менным.

В целом же, нам представляется, что новые экспериментальные результаты дают основание рассматривать для Земли наряду с гипотезой о железо-никелевом составе ядра и модель химически однородной планеты. Естественно, что заключения, сделанные в работе, носят скорее качественный характер и только будущие новые эксперименты позволят сделать окончательные выводы.

Авторы считают своим приятным долгом поблагодарить акад. Ю. Б. Харитона за обсуждение результатов работы.

Поступило 8 VI 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. В. Альтшулер, К. К. Крупников и др., ЖЭТФ, 34, № 4, 874 (1958).

² Л. В. Альтшулер, С. Е. Кормер и др., ЖЭТФ, 38, № 3, 790 (1960). ³ В. Н. Жарков, ДАН, 135, № 6, 1378 (1960). ⁴ К. К. Крупников, А. А. Баканова и др., ДАН, 148, № 6, 1302 (1963). ⁵ Р. Ф. Трунин, В. И. Ганьшикова и др., Изв. АН СССР, сер. Физика Земли, 9, № 1 (1965). ⁶ Л. В. Альтшулер, Р. Ф. Трунин, Г. В. Симаков, Там же, 10, № 1 (1965). ⁷ Р. Ф. Трунин, Г. В. Симаков и др., Там же, 1, № 13 (1971). ⁸ Л. В. Альтшулер, К. К. Крупников, М. И. Бражник, ЖЭТФ, 34, № 4, 886 (1958). ⁹ А. Е. Ringwood, J. Geophys. Res., 67, № 10 (1962). ¹⁰ С. М. Стишов, Геохимия, 8, 649 (1962). ¹¹ D. Н. Green, А. Е. Ringwood, J. Geophys. Res., 68, № 3 (1963). ¹² Л. В. Альтшулер, М. А. Подурецидр., Физика тв. тела, 15, № 5, 1436 (1973). ¹³ Т. J. Аhrens, D. L. Anderson, A. E. Ringwood, J. Geophys. Res., 7, 667 (1969). ¹⁴ В. J. Levin, Surfaces and Interiors of Planetes and Satellites, London N.Y., 1970, p. 462. ¹⁵ N. Kawai, S. Mocch zuki, Phys. Letters, 36A, № 1, 54 (1971).