УДК 577.158.8

БИОХИМИЯ

И. М. СИМАКОВА, Е. Ф. ХАРАТЬЯН, Н. С. ГЕЛЬМАН

ВЫДЕЛЕНИЕ ME3OCOM ИЗ БАКТЕРИЙ MICROCOCCUS LYSODEIKTICUS

(Представлено академиком А. И. Опариным 12 II 1973)

Мембранный аппарат протопласта бактерий представлен цитоплазматической мембраной (ц.м.) и внутренними мембранами, которые называют мезосомами. Несмотря на то, что мезосомы были обнаружены сравнительно давно, их роль в клетке, а также химический и ферментативный состав остаются неясными. Объясняется это трудностями, связанными с выделением и очисткой мезосом. Тем не менее из некоторых бактериальных клеток мезосомы выделены, хотя загрязнены ц.м. и рибосомами (1-4).

В своей работе мы предприняли попытку выделить и по возможности охарактеризовать фракции мезосом и ц.м. из бактерий М. lysodeikticus. Бактерии выращивали на мясопептонном бульоне в колбах на качалке при 37°. Биомассу собирали в конце логарифмической фазы роста центрифугированием при 4000 об/мин, промывали 0,04 М трис-буфером рН 7,4 и

хранили при 4° не свыше 5 дней.

Попытка изолировать мезосомы из общего лизата клеток в соответствии с предложенными ранее методами $\binom{1}{2}$ не дала результатов. В дальнейших опытах фракции мезосом и ц.м. мы получали через стадию выделения протопластов, как это было проведено на клетках бацилл $\binom{3}{4}$. Мы также наблюдали, что обработка клеток 1 M сахарозой вызывала плазмолиз и выход мезосом в пространство между клеточной стенкой и ц.м. (рис. 1a, см. вкл. к стр. 1457).

Схема выделения двух фракций мембран из бактерий следующая:

Клетки суспендировали в $1\,M$ сахарозе на трис-буфере, рН 7,4 с MgSO₄ $10^{-3}\,M$. Лизис (1 мг лизоцима на $250\,$ мг сухого веса бактерий) вели 1 час при 37° . После лизиса суспензию центрифугировали $10\,$ мин. при $4000\,$ об/мин для удаления нелизированных клеток, затем осаждали при $25\,000\,$ g $1\,$ час, после чего надосадочную жидкость центрифугировали при $25\,000\,$ g $1\,$ час для отброса крупных фрагментов, а затем $2\,$ часа при $280\,000\,$ g.

В результате в осадке получали фракцию мезосом, имеющих вид мелких

замкнутых пузырьков.

Для получения ц.м. протопласты разрушали замораживанием и оттаиванием в присутствии ДНКазы (0,5 мг на 250 мг сухого веса бактерий). Суспензию центрифугировали при $25\ 000\ g\ 30$ мин. и дважды промывали буфером (рис. $1\ g$).

О степени загрязнения получаемых фракций рибосомами судили по электронно-микроскопическим фотографиям (рис. 1 6, 6), а также по содержанию РНК. РНК определяли по отношению E_{260} / E_{280} после гидролиза

пренаратов в 6% HClO4 при 90°, 30 мин.

Во фракциях д.м. и мезосомах были обнаружены примеси РНК (табл. 1), вероятно, рибосомального происхождения.

Таблица 1 Содержание белка, РНК и липидов во фракциях цитоплазматических мембран (ц.м.) и мезосомах (м.)

Фракция	Белок во фракции, мг	РНК, мг на 1 мг белка	Фосфолиниды, мг на 1 мг белка	Лютеин, ΔD на 1 мг белка
п.м.	78,0	0,07	0,55	38,3
	11,6	0,05	0,28	15,0

Белок во фракциях определяли методом Лоури (5). Фосфолипиды определяли по фосфору в хлороформ-метанольных экстрактах. Лютеин находили спектрофотометрически при 455 мµ и выражали в величине оптической плотности. Малат- и НАД-Н-дегидрогеназы измеряли по скорости восстановления 2,6-дихлорфенолиндофенола (2,6-ФДИ) с регистрирующей приставкой. Среда содержала 2,6-ДФИ (0,4 мМ), 2,0 µмол малата или 0,5 µмол НАД-Н в 4 мл трис-буфера с MgSO₄ 10⁻³ М и 0,005—0,03 мг белка. Активность дегидрогеназ выражали в µмол субстрата, окисленного в 1 мин. на 1 мг белка. Малат-аскорбат- и НАД-Н-оксидазы определяли полярографически (8). Среда содержала 10 µмол малата, 2,0 µмол НАД-Н или 10 µмол аскорбата в присутствии ТМРД, белка 0,6—2,0 мг в 2 мл буфера. Препараты фиксировали 0,1% глютаральдегидом на ацетоноверонало-

Препараты фиксировали 0.1% глютаральдегидом на ацетоновероналовом буфере рН 6.4 с дофиксацией (9), обезвоживали ацетоном и заключали в аралдит (10), срезы получали на ультратоме и просматривали в микро-

скопе JEM-6 при инструментальном увеличении 30 000×.

Таблица 2 Содержание оксидаз и дегидрогеназ во фракциях цитоплазматических мембраи (ц.м.) и мезосомах (м.)

Фракции	Оксидазы, µмол О2/мин на 1 мг белка			Дегидрогеназы, µмол О₂мин на 1 мг белка	
	малата	над-н	аскорбата	малата	над-н
ц.м.	0,45 0,05	1,27 0,25	0,25 0,06	0,36 0,16	1,12 0,09

Из данных по распределению белка между фракциями (табл. 1) можно заключить, что мезосомы составляют около 15% от цитоплазматических мембран. Мезосомы по сравнению с ц.м. содержат почти на 50% меньше фосфолипидов и лютеина, что противоречит данным (11), у которых аналогичные фракции мембран бактерий М. lysodeikticus не отличались по соотношению белка и фосфолипидов. Наш метод выделения мезосом отличается от метода, применяемого Оуэном и Фриером, только тем, что мы вели плазмолиз в 1 М сахарозе вместо 2 М и фракцию мезосом не промывали. Сни-

жение концентрации сахарозы при плазмолизе может отразиться только на полноте выхода мезосом, а не на их химическом составе. Причиной же изменения отношения белок/липид в мезосомах, вероятно, является их загрязнение белками цитоплазмы, удаление которых достигалось в опытах Оуэна и Фриера (11) многократными промывками.

Вопрос о функции мезосом, в том числе и о локализации в них ферментов цепи перепоса электронов, является спорным (2, 12). Мы провели определение оксидаз малата, НАД-Н и аскорбата, а также дегидрогеназ малата

и НАД-Н в мезосомах и ц.м. (табл. 2).

Активность указанных ферментов мезосом существенно меньше по сравнению с ц.м., что согласуется с данными (11). Незначительная оставшаяся активность может быть отнесена за счет загрязнений фрагментами ц.м.

Таким образом, можно сделать вывод, что система ферментов переноса электронов локализована не в мезосомах, а скорее в цитоплазматических мембранах.

Институт биохимии им. А. Н. Баха Академии наук СССР Москва Поступило 9 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ B. Ghosh, R. Murray, J. Bacteriol., 97, 426 (1969). ² C. Patch, O. Landman, J. Bacteriol., 107, 345 (1971). ³ D. Reaveley, H. Rogers, Biochem. J., 113, 67 (1969) ⁴ B. Ferrandes, P. Chaix, Biochim. et biophys. acta, 256, 548 (1972). ⁵ O. Lowry, N. Rosebrough et al., J. Biol. Chem., 193, 265 (1951). ⁶ J. Folch, M. Lees, G. Sloane-Stanley, J. Biol. Chem., 226, 497 (1957). ⁷ E. Gerlach, B. Deutiche, Biochem. Zs., 337, 477 (1963). ⁸ X. Ф. Шольп, Д. Н. Островский, Лаб. дело, 6, 375 (1965). ⁹ A. Ryter, E. Kellenberger et al., Zs. Naturforsch., 13b, 597 (1958). ¹⁰ J. Luft, J. Biophys. Biochem. Cytol., 9, 409 (1961). ¹¹ P. Owen, J. Freer, Biochem. J., 129, 907 (1972). ¹² A. Ryter, Bacteriol. Rev., 32, 39 (1968).