УДК 541.128

ХИМИЯ

А. М. СОКОЛЬСКАЯ, С. А. РЯБИНИНА, Е. Н. БОСЯКОВА, академик АН КазССР Д. В. СОКОЛЬСКИЙ

МЕХАНИЗМ ГИДРИРОВАНИЯ ГЕКСИНА-1 НА Pt-И Rh-ЧЕРНЯХ В РАЗЛИЧНЫХ РАСТВОРИТЕЛЯХ

На Pt- и Rh-чернях, приготовленных формальдегидно-щелочным методом, тройная связь и образующаяся двойная гидрируются с различными скоростями (рис. 1, 2). В сравнимых условиях скорости гидрирования двойной связи на платине выше, чем на родии (табл. 1). Следовательно, результаты, полученные при гидрировании коричной кислоты (1) и этилена (2), являются частным случаем и не свидетельствуют в пользу того, что родий — оптимальный катализатор для гидрирования олефинов.

Тройная связь гидрируется на родии с меньшей скоростью, чем на платине (табл. 1). Различие в скоростях гидрирования тройной связи на родии в протонных и апротонных растворителях можно объяснить способностью «подвижного» атома водорода этинильной группы гексина-1 образовывать с протонным растворителем (ROH) ассоциаты типа:

H H
$$O-CH_2-CH_3$$
 $R-C\equiv C-H\cdots O-CH_2-CH_3$; $Me-H\cdots O-CH_2-CH_3$; Me

Такие ассоциаты усиливают адсорбционную способность алкина, вытесняя с поверхности катализатора слабосвязанный водород (3). В апротонных растворителях такие ассоциаты образовываться не могут; коэффициент

Таблица 1 Значение удельных скоростей реакции гидрирования (мл H_2 /мин.) гексина-1 и гексена-1 ($A_{2H_2}=A_{H_2}=200$ мл) на Pt- и Rh-чернях (0,05 г) в различных растворителях (25 мл) при 30°

	Pt-чернь			Rh-чернь		
Растворители (абсолютные)	C≡C	C=C	С=С (индив.)	c≡c	C=C	С=С (индив.)
Протониые метанол этанол пентанол гексанол деканол ДМФА Диоксан Апротонные гексан декан декан декан декан декан	38,2 35,0 35,0 17,5 20,0 15,0 27,5 38,2 32,5 25,0 35,0	101,2 78,5 61,2 40,0 35,0 24,5 49,5 150,0 87,5 46,0 70,0	56,2 45,0 40,0 27,5 25,0 20,0 30,0 60,0 40,0 32,5 32,5	3,3 3,8 4,4 3,5 4,0 5,9 8,9 17,4 8,1 7,1 10,4	54,1 48,2 37,0 33,3 23,9 34,6 25,2 51,1 31,1 26,5 24,6	48,5 33,7 32,2 28,2 19,6 30,4 21,5 34,1 24,8 22,2 13,0

Примечание. Значения скоростей взяты для С≡С-связи к исходу поглощения 20 мл Н₂, образующейся С≡С-связи— максимальные, для индивидуального гексена-1— к исходу, поглощения 50% общего количества водорода, необходимого для превращения гексена в гексан.

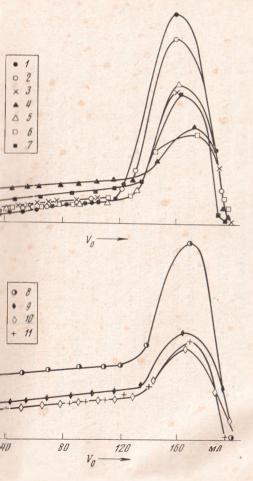


Рис. 1. Гидрирование гексина-1 $(A_{2\text{H}_2}=200\,\text{ мл})$ на Pt- (A) и Rh-чернях (B) $(0,05\,\text{ г})$ в растворителях $(25\,\text{ мл})$ при 30° ; 1-7- протонные: 1- метанол, 2- этанол, 3- пентанол, 4- диоксан, 5- гексанол, 6- деканол, 7- ДМФА; 8-11- апротонные: 8- гексан, 9- декан, 10- пиклогексан, 11- гексадекан

распределения гексина-1 и образовавшегося гексана в этих растворителях

способствует увеличению скорости гидрирования тройной связи.

Относительно высокую скорость гидрирования тройной связи на Rhчерни в диоксане можно объяснить неспособностью молекул его образовывать между собой водородную связь, а также образованием водородной связи с гексином-1 типа:

$$R-C \equiv C-H \cdots O$$
 CH_2-CH_2
 $O \cdots H-C \equiv C-R$,
 CH_2-CH_2

приводящей к ослаблению прочности тройной связи, что подтверждено и.-к. и спектрами к.р. Наиболее прочные ассоциаты образует ДМФА, затем диоксан, в меньшей степени этанол и метанол (данные я.м.р.).

Гидрирование осуществляется неселективно и сопровождается миграцией двойной связи и цис-трансизомеризацией (табл. 2). Более высокие

значения $S_{\text{общ}}$ на родии в спиртах подтверждают наше предположение о том, что полярные молекулы $(C_1-C_{10}-спирты)$, взаимодействуя с поверхностью родия, вытесняют слабосвязанный водород, изменяя тем самым соотношение слабо и более прочно связанного водорода в пользу последнего; на платине из-за наличия прочносвязанного водорода и разнообразных его форм получены близкие результаты (табл. 2). Поэтому адсорбция полярных растворителей не оказывает такого влияния, как на родии, что подтверждается найденной нами зависимостью $S_{
m o fm}$ от диэлектрической постоянной растворимости: на родии селективность растет с увеличением D, на платине остается неизменной.

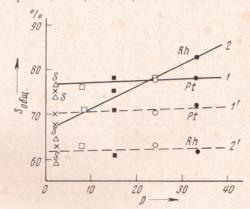
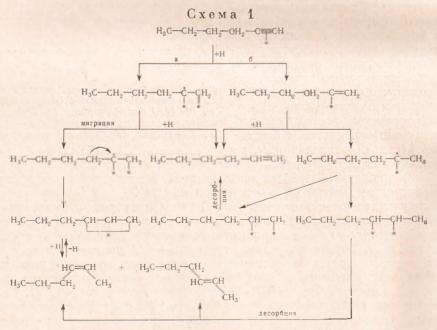


Рис. 2. Зависимость селективности процесса гидрирования гексина-1 $(A_{2\text{H}_2}=200\text{ мл})$ на Pt- $(I,\ I')$ и Ph-чернях $(2,\ 2')$ от ди-электрической постоянной $D.\ I,\ 2-1$ атм, $I',\ 2'-10$ атм. Обозначения те же, что и на рис. 1


Слабые полярные свойства диоксана приближают его к алканам, кроме того, поскольку диоксан вызывает ослабление С \equiv С-связи (данные спектроскопии к.р.), что ослабляет связь Ме \equiv С и приближает «деформированную» тройную связь к двойной, для гидрирования которой необходим слабосвязанный водород,— становится понятным, почему в диоксане $S_{\rm общ}$ наименьмая (табл. 2). Повышение температуры (12—40°) увеличивает селективность, это сказывается на соотношении алкин/алкен, последнее увеличивается за счет уменьшения адсорбции двойной связи (4); селективность на родии в этаноле больше (60—76%), чем в декане (53—65%). Селективность при повышенном давлении (10 атм.) на Pt- и Rh-чернях в апротонных растворителях уменьшается на 3—6%; в протонных на платине тот же эффект, на родии уменьшение $S_{\rm общ}$ достигает 20%. В условиях повышенного давления на поверхности металла увеличивается количество слабосвязанного водорода, особенно на родии. Повышение давления, вероятно, приводит к разрушению существующих на поверхности катализатора ассоциатов, причем на родии в большей мере, чем на платине.

Как правило, коэффициент миграции на родии больше, чем на платине (табл. 2). Это является следствием того, что на родии активированный промежуточный комплекс, подвергающийся л-аллильной перегруппировке, образуется легче, чем на платине, что связано с природой металла и положением его в Периодической системе (3). Благодаря легкому вращению

Данные о гидрировании гексина-1 ($A_{2{
m H}_8}=200\,$ мл) на Pt- и Rh-чернях (0,05 г) в различных растворителях (25 мл) при 30° к моменту поглощения 1-го моля ${
m H}_2$

		Pt-черны		Rh-чернь			
Растворители (абсолютные)	Селентив-	коэффициент F		Селектив-	коэффициент <i>F</i>		
	ность Sобщ, %	миграция	изомериза- ция	ность Ѕобщ, %	миграция	изомериза- ция	
Протонные							
метанол	78	0,07	0,62	82	0,18	0,57	
этанол	78	0,13	0,58	78	0,17	0,57	
пентанол	78	0,10	0,40	71	0,04	0,25	
деканол	76	_	-	71		_	
ДМФА	81	0,03	0,66	74	0,13	0,77	
Диоксан	72	0,16	0,60	63	0,26	0,79	
Апротонные циклогексан	77	0,07	0,68	65	0.07	0 51	
декан	77	0.06	0.73	65	0,04	0,54	
гексадекан	75		0,15	68	0,00	0,51	
_ выход	выход продуктов миграции			выход транс-изомера			
мигр =	$F_{\text{U3OM}} =$	выход цис	выход цис + транс-изомеров				

вокруг двойной связи в активированном комплексе, находящемся на поверхности катализатора, наряду с цис-олефинами образуется и транс-изомер. Относительно легкое вращение обеспечивается резонансом между л-электронами двойной связи и электронами катализатора (5).

По нашему мнению, гидрогенизация гексина-1 на Pt- и Rh-чернях в различных растворителях осуществляется по схеме 1. В том или другом растворителе преобладает маршрут а или б.

Институт органического катализа и электрохимии Академии наук КазССР Поступило 29 XI 1972

цитированная литература

¹ Д. В. Сокольский, Сборн. Проблемы кинетики и катализа, 6, Изд. АН СССР, 1949, стр. 157. ² О. Вееск, Disc. Farad. Soc., 8, 118, 126 (1950). ³ Д. В. Сокольский, А. М. Сокольская, Металлы-катализаторы гидрогенизации, Алма-Ата, 1970. ⁴ В. А. Шошенкова, Гидрирование алкинов на родии, Кандидатская диссертация, Алма-Ата, 1972. ⁵ R. Ramanet, C. R., 236, 1677 (1953).