УДК 541.49+541.64

ФИЗИЧЕСКАЯ ХИМИЯ

м. г. коломеер, е. в. стовбун, в. ф. гачковский, э. ф. вайнштейн

О СТРУКТУРЕ КОМПЛЕКСОВ ТРИЭТИЛАЛЮМИНИЯ И ПОЛИЭТИЛЕНГЛИКОЛЯ В СИЛЬНО РАЗБАВЛЕННЫХ РАСТВОРАХ

(Представлено академиком Н. М. Эмануэлем 9 IV 1973)

Комплексообразование макромолекул, содержащих электронодонорные атомы, с низкомолекулярными акцепторами—алюминийорганическими соединениями практически не исследовалось. В работе (1) была высказана гипотеза о существовании трех типов комплексов — 1:1,2:1 и 1:2 — для системы полиэтиленгликоль — диэтилалюминийхлорид, в зависимости от α -соотношения числа грамм-эквивалентов, соответствующих фрагменту макромолекулы, содержащему один донорный гетероатом, и числа молей акцептора.

С целью доказательства этого предположения была изучена система полиэтиленгликоль ($\Pi \partial \Gamma$) — триэтилалюминий ($T \partial A$) микрокалориметриче-

ским и люминесцентным методами.

Так как ТЭА и его соединения очень чувствительны к кислороду воздуха и влаге, все эксперименты проводили в атмосфере сухого аргона, ПЭГ сушили и дегазировали в тонком слое при температуре $60-80^{\circ}$ в вакууме в течение нескольких суток. Толуол и бензол очищали по стандартной методике (2), затем перемораживали или перегоняли над LiAlH в токе

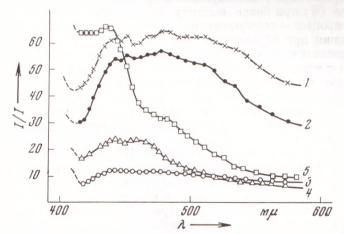


Рис. 1. Спектры люминесценции комплексов: $\iota-\alpha=3.6$, $2-\alpha=2.3$; $3-\alpha=0.96$; $4-\alpha=0.14$, 5—спектр люминесценции раствора ТЭА (конд. 0,25 вес.%)

сухого аргона. В микрокалориметрии растворителем служил бензол. Калориметрические измерения проводили в цельнопаянных стеклянных ампулах на микрокалориметре МК-2 (³). Для снятия спектров люминесценции приготовляли растворы комплекса в толуоле. Съемку спектра проводили в кварцевой кювете со шлифом, на который надевалась стеклянная муфта, заливавшаяся для герметичности парафином. Спектры люминесценции

снимали в диапазоне длин волн 400-600 м μ . Толуол, $\Pi \partial \Gamma$ в растворе и $T\partial A$ в виде мономера (в разбавленном растворе) спектров люминесценции

практически не имеют, спектр димера ТЭА представлен на рис. 1.

Результаты и их обсуждение. При стехиометрическом соотношении реагентов выделяется теплота, равная 12,0 ккал / моль, очень близкая по величине к теплоте образования комплекса состава 1:1 для низкомолекулярных соединений (4). В соответствии с литературными данными по строению комплексов низкомолекулярных простых эфиров с ТЭА (4) образующийся при стехиометрическом соотношении комплекс имеет структуру 3.

Структуры комплексов системы $\Pi \partial \Gamma - T \partial A$ в разбавленном растворе

С увеличением избытка лиганда происходит рост теплоты комплексообразования до 22 ккал/моль (при $\alpha = 9.7$), и одновременно наблюдается существенное увеличение интенсивности спектров люминеспенции с появлением характерного пика при длине волны 447 мм. По-видимому, это связано с появлением еще одной координационной связи металл — лиганд (увеличением координационного числа алюминия до 5). Увеличение тепловыделения наблюдается при понижении концентрации реагирующих веществ. Вероятно, при низких концентрациях происходит присоединение алюминия к двум кислородам одной макромолекулы, что возможно благодаря большой гибкости молекулы полимера, пространственная ориентация частей которой создает благоприятные условия для образования такого рода хелатов (5); при более высоких концентрациях доминирует конкурирующий процесс — ассоциация исходного полимера. Случаи появления люминесценции при образовании хелатных комплексов с участием атома металла описаны в литературе (6). Аналогичный случай, по-видимому, имеет место и в нашей работе. Образующиеся циклы могут содержать 5, 8 и более атомов в кольце. Теплоты образования циклов с различными размерами кольца, вероятно, незначительно отличаются друг от друга. Термодинамически более выгоден пятичленный цикл, однако на основании сложного вида спектра можно предположить наличие циклов с различным числом атомов.

Увеличение тепловыделения в системе $\Pi \Im \Gamma - T \Im A$ до 20,2 ккал/моль (при $\alpha=0,125$) наблюдалось также и при существенном избытке акцептора, при этом происходило значительное увеличение интенсивности спектра люминесценции и появление в нем двух пиков, один из которых (при λ 440 мµ) принадлежит димеру $T \Im A$ (рис. 1), а другой (при λ 462 мµ), очевидно, образующемуся в данном случае комплексу 1:2. Можно представить 2 типа структур комплекса — I и Ia, против структуры Ia имеются серьезные возражения термодинамического характера (7). Образование комплекса 1:2 наблюдалось только в очень разбавленных растворах $\Pi \Im \Gamma$, что может быть объяснено наличием конкуренции между процессами комплексообразования и ассоциации полимерных молекул, в которых все атомы кислорода образовали комплекс 1:1 с $T \Im A$. Изучение этой концентрационной зависимости, возможно, позволит получить данные о процессе ассоциации закомплексованных молекул полимеров. О существовании четырехкоординационного кислорода сообщалось в литературе (8), хотя такие комплексные соединения, содержащие алюминий, нам неизвестны.

В работе Попова (¹) показано, что при образовании комплекса типа III с диэтилалюминийхлоридом происходит переход молекулы ПЭГ в конформацию плоского зигзага. Образование комплекса типа I приводит к некоторому напряжению в полимерной цепи. Данное напряжение п определяет, по-видимому, возникновение спектра люминесценции. Напряженное состояние цепи, вероятно, должно приводить к увеличению скорости разложения комплекса. Пространственное затруднение подхода молекулы ТЭА с присоединением AI к цепи, в которой все атомы кислорода насыщены с образованием комплекса 1:1, должно повести к уменьшению скорости образования комплекса типа I. Обе эти причины, возможно, могут объяснить низкую константу равновесия образования комплекса с четырехкоординационным кислородом, который является невыгодным с точки зрения энтропии.

Институт химической физики Академии наук СССР Москва Поступило 22 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Попов, Кандидатская диссертация, М., 1971, ² Общий практикум по органической химии, М., 1965. ³ Э. Кальве, А. Прат, Микрокалориметрия, ИЛ, 1963. ⁴ Н. М. Алпатова, В. В. Гавриленко и др., Комплексы металлоорганических гидридных и галоидных соединений алюминия, «Наука», 1970. ⁵ Г. Моравец, Макромолекулы в растворе, М., 1967. ⁶ С. Паркер, Фотолюминесценция растворов, М., 1972. ⁷ Ф. Коттон, Дж. Уплкинсон, Современная неорганическая химия, 2, М., 1969. ⁸ К. Starowieyski, М. Разупкеwicz, М. Воleslawski, J. Organomet. Chem., 10, 393 (1967).