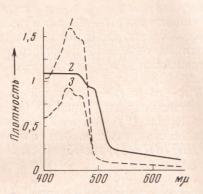
УДК 541.49 химия

Л. П. ШАМАЙКО, Е. П. ТРАИЛИНА, И. А. САВИЧ, академик В. И. СПИЦЫН

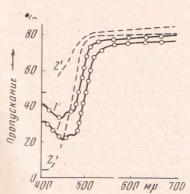
ИССЛЕДОВАНИЕ ДЛИННОВОЛНОВОЙ ПОЛОСЫ В СПЕКТРАХ ПОГЛОЩЕНИЯ ТОНКИХ ПЛЕНОК АЗОМЕТИНОВ И КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ИНДИЯ(III) НА ИХ ОСНОВЕ

Электронные спектры поглощения ароматических азометинов на основе салицилового и β-оксинафтойного альдегидов довольно подробно исследованы в различных растворителях (1-3). О спектрах поглощения комплексов индия сообщалось в (4). Нами изучена длинноволновая полоса в спектрах поглощения шиффовых оснований

и комплексных соединений индия


Образдами служили тонкие пленки, изготовленные термическим напылением в вакууме. Технология изготовления сублимированных слоев описана в (5). Запись спектров вели на СФ-10. Интерес к спектральным исследованиям веществ в тонких пленках (собственно соединений, без растворителя) объясняется тем, что сублимация в вакууме обеспечивает дополнительную очистку вещества, а получаемые сплошные ровные тонкиепленки являются безупречными для спектрофотометрирования (6). Крометого, органические соединения склонны к изомеризации в растворах, а в кристаллическом состоянии изомеризация или вообще отсутствует, или скорость ее на 4 порядка меньше, чем в растворе (7).

Для всех соединений, исследованных в данной работе, при переходе от раствора к твердому состоянию длинноволновая полоса смещается батохромно (рис. 1). Сдвиг полосы в сторону более длинных волн (меньших энергий) можно объяснить улучшением сопряжения в молекуле азометина, так как исследуемые соединения акопланарны (3). Известно, что в кристаллическом состоянии (благодаря стремлению к плотнейшей упаковке (8), приводящей к минимальной энергии молекулы) угол акопланарности


изменяется по сравнению с раствором (9).

В молекулах с гетероатомами, содержащими систему сопряженных связей, электронные переходы в видимой и близкой у.-ф. области спектра

обусловлены возбуждением как π -, так и n-электронов на свободные π^* -орбитали, т. е. в молекулах реализуется четыре типа возбужденных состояний: $S_{\pi-\pi^*}$, $T_{\pi-\pi^*}$, $S_{\pi-\pi^*}$ и $T_{\pi-\pi^*}$ (10). Нас интересуют синглетные $S_{\pi-\pi^{*-}}$ и $S_{n-\pi^*}$ -состояния, потому что, согласно работам $\binom{11}{5}$, азометины и комплексные соединения индия на их основе являются полупроводниками, кроме

Спектры поглощения $InCl_3(X)$: 1 — исходное вещество, — сублимированная пленка, 3 смытая пленка

3. Спектры пропускания: VII; 2, $2' - InBr_3(I)_3$

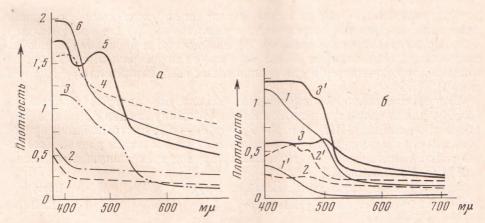


Рис. 2. Спектры поглощения: a — азометины: 1 — I, 2 — VI, 3 — II, 4 — III, 5 — IV. 6 — V; 6 — комплексы: 1 — II, 1' — $InCl_3$ (II) $_3$, 2 — VII, 2' — $InBr_3$ (VII) $_3$, 3 — X, 3' — $InCl_3$ (X)

того яркая окраска и наличие группы -C = N позволяют отнести их к

классу красителей (12).

Разделение полос, соответствующих S_{n-n} и S_{n-n} переходам, является довольно трудной, но важной задачей. Один из несвязывающих электронов атома азота может переходить на возбужденную п*-электронную орбиту при очень малой энергии возбуждения. Этот $n-n^*$ -переход является запрещенным, а потому мало интенсивным; вблизи него всегда расположен интенсивный л — л*-переход (13). В спектрах азометинов полосу, соответствующую $\pi - \pi^*$ -переходу, обозначают K, а $n - \pi^*$ -переходу — R-полосой.

Для шиффовых оснований I—VI, по данным работы (14), $n-\pi^*$ -полоса может появиться в случае, если угол акопланарности $\theta < 15^\circ$. Хотя, согласно (3), угол некопланарности для производных салицилаль-анилинов в растворах лежит в пределах 30-60°, в твердом состоянии он может уменьшаться (9). Это уменьшение и специфическое действие ОН-группы приводит к появлению $n-\pi^*$ -полосы в виде перегиба на склоне $\pi-\pi^*$ -полосы для II и даже разрешения этих полос для IV (рис. 2, a). Для соединений VII — XI с увеличением цепи п-сопряжения возможно перераспределение

величин энергий $\pi - \pi^*$ - и $n - \pi^*$ -переходов. Наиболее длинноволновой будет $\pi - \pi^*$ -, а не $n - \pi^*$ -нолоса.

При комплексообразовании происходит батохромный сдвиг длинноволновой полосы, значительный (до 20 мм) у производных салицилаль-анилина и менее выраженный для производных в-окси-нафтальанилина. Это имеет место для азометинов, у которых наиболее длинноволновой полосой является $\pi - \pi^*$. Если же у азометинов длинноводновая $n - \pi^*$ -полоса, как VII и IV, то при образовании донорно-акцепторной N—Ме-связи n-электроны отвлекаются от сопряжения с аминной частью азометина, что приводит к исчезновению перегиба $n-\pi^*$ на длинноволновой $\pi-\pi^*$ полосе и гипсохромному эффекту (рис. 2, б). Это отражается и в цвете: II - желто-коричневый, InCl₃ (II)₃ — светло-желтый.

Качественная зависимость энергий $\pi - \pi^*$ - и $n - \pi^*$ -уровней от увеличения системы л-сопряжения теоретически получена в работе (15) и рассмотрена в (16) для азометинов. Ранее Куном (17) выведена формула для определения длины волны λ первой длинноволновой полосы поглощения линейных сопряженных молекул: $\lambda = KN^2/(N+1)$, где K=63,7,N-число л-электронов в молекуле.

Соединение Цвет	I светло-желтый	VII ярко желтый	Х оранжевый	XI красный
N	7	9	11	14 *
λ_{Teop} , $M\mu$	390	515	634	830
λ _{опыт} , мμ	390	490	520	580

Из приведенных данных видно, что принцип увеличения λ с удлинением цепи сопряжения сохраняется, а различие между λ теоретическим и λ экспериментальным объясняется нелинейностью и акопланарностью исследованных соединений и может служить ее подтверждением. Такая же зависимость сохраняется и для комплексных соединений индия с азометинами I, VII, X (5).

Экспериментально λ определяли, используя спектры пропускания (рис. 3) для пленок двух разных толщин (толщину пленки d, равную 0.5-1,5 μ , измеряли на МИИ-4): $\ln T_1/T_2 = \alpha (d_2 - d_1)$. Экстраноляция кривой зависимости коэффициента поглощения а от длины волны дает λ. Еще более точно λ можно определить, используя метод трех толщин, предложенный М. Т. Костышиным (19).

Ворошиловградский машиностроительный институт

Поступило 22 II 1973

Московский государственный университет им. М. В. Ломоносова

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Минкин, О. А. Осипов, В. А. Коган, ДАН, 145, № 2, 336 (1962).

² О. А. Осипов, В. И. Минкин и др., ЖНХ, 12, 7, 1867 (1967).

³ Б. М. Красовицкий, Б. М. Болотин, Р. Н. Нурмухаметов, ЖОХ, 34, 3736 (1964).

⁴ С. С. Ляпина, В. В. Мищенко и др., ДАН, 190, № 3, 593 (1970).

⁵ Л. П. Шамайко, А. Н. Теслев, Е. П. Траилина, Матер. совещ. по физике и технологии тонких пленок сложных полупроводников, Ужгород, 1972.

⁶ А. Т. Вартанян, ЖФХ, 30. 5, 1028 (1956).

¬ Физика и химин твердого состояния органических соединений, ред. Ю. А. Пентин, 1, М., 1967, стр. 248.

ѕ А. И. Китайгородский, Органическая кристаллохимия, Изд. АН СССР, 1955.

¬ А. В. Бобров, Х. Е. Стерин, Оптика и спектроскопия, 17, 4, 625 (1964).

¬ Р. Н. Нурмухаметов, В. Г. Плотников, Д. Н. Шигорин, ЖФХ, 40, 5, 1154 (1956).

¬ В. И. Вартанян, Л. Д. Розенштейн, ДАН, 131, № 2, 279 (1960); ФТТ, 3, 3, 713 (1961).

¬ В. И. Данилова, В. Г. Плотников, Оптика и спектроскопия, 17, 4, 626 (1964).

¬ В. И. Данилова, В. Г. Плотников, Оптика и спектроскопия, 17, 4, 626 (1964).

¬ В. И. Минкин, ЖФХ, 41, 3, 556 (1967).

¬ В. Г. Плотников, Оптика и спектроскопия, 20, 4, 589 (1966).

¬ В. Г. Плотников, Оптика и спектроскопия, 20, 4, 589 (1966).

¬ В. Г. Плотников, 17, 4, 558 (1964).

¬ В. Г. Плотников, 17, 4, 558 (1964).

¬ В. Г. Плотников, 17, 4, 558 (1964).

¬ В. Г. В. Г. В. Г. Б. Г. В. Г. Н. Кин, J. Сhem. Phys., 17, 1198 (1949).

¬ В. Г. В. Г. Б. В. Н. Нурмухаметов, Там же, 17, 4, 558 (1964).

¬ В. П. П. Нагорная, ЖФХ, 38, 5, 1142 (1964).

¬ В. Г. Б. М. Костышин, Оптика и спектроскопия, 5, 3, 312 (1958).

^{*} Согласно (18), воздействие на $S^* \to S_0$ для - и 2-CH= CHпримерно одинаково.