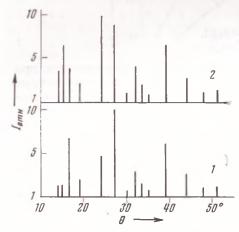
УДК 548.315.2:546.97

ФИЗИЧЕСКАЯ ХИМИЯ

А. В. АБЛОВ, И. Д. САМУСЬ, А. Л. УФНАРОВСКИЙ, О. А. БОЛОГА


О НЕОДИНАКОВОЙ СВЯЗИ NCS-ГРУПП С МЕТАЛЛОМ В КООРДИНАЦИОННЫХ СОЕДИНЕНИЯХ РОДИЯ(III) С АММИНАМИ И ДИМЕТИЛГЛИОКСИМОМ

Как известно, в Co(III)-амминах группа NCS связана с металлом через атом азота (1), а в соединениях с се-диоксимами связь этой группы осу-

ществляется через серу $(^2, ^3)$.

Поскольку некоторые комплексные соединения родия (III) показывают далеко идущее сходство с соединениями кобальта (III), представляло интерес выяснить, каким образом связана NCS-группа в родий(III)-амминах и в диоксиминах родия (III).

Попытки получить крупные монокристаллы родий (III)-амминов для проведения рентгеноструктурного анализа не увенчались успехом. Дифрактограммы $[Co(NCS)(NH_3)_5](NO_3)_2$ и $[Rh(NCS)(NH_3)_5](NO_3)_2$ (рис. 1) указывают на одинаковые элементарные ячейки. Однако лишь на

Штрих-рентгенограммы $\cdot (NCS) (NH_3)_5 (NO_3)_2 (1) \mathbb{R} (Rh(NCS) \cdot$ $-(NH_3)_5](NO_3)_2(2)$

основании дебаеграмм (4) нельзя дечто соединения ровывод, дия (III) и кобальта (III) [M (NCS) · $\cdot (NH_3)_5]X_2$ (где X=Cl, Br) изо-

структурны.

В (5) были обсуждены некоторые свойства, а также спектры поглощения в у-ф. и и.-к. областях соединения транс-[Rh(NCS)Clen₂]SCN. Авторы приходят к выводу, что внутрисферная группа NCS связана с родием через атом азота.

(⁶) изучены и.-к. спектры $[Rh(NCS)(NH_3)_5]Br_2$ и приписаны частоты колебания v(CN) и v(CS). Авторы этой работы приходят к выводу, что NCS-группа связана с родием через атом азота.

Нами были сняты и.-к. сцектры поглошения тиоцианатопентамминов кобальта (III) родия (III) И

 $[Co(NCS)(NH_3)_5](NO_3)_2$ и $[Rh(NCS)(NH_3)_5](NO_3)_2$. Для $[Co(NCS) \cdot]$ $(NH_3)_5](NO_3)_2$ $\nu(CN) = 2140$ см⁻¹ и $\nu(CS) = 815$ см⁻¹, а для [Rh(NCS)] \cdot (NH₃)₅] (NO₃)₂ ν (CN) =2145 см⁻¹ и ν (CS) =830 см⁻¹ (рис. 2). Почти полностью совпадающие контуры спектров позволяют допустить, что взаимное распределение атомов в обоих кристаллах аналогично (7). Таким образом, можно считать достаточно убедительно доказанным, что в родий (III) амминах группа NCS координирована у металла атомом азота.

Для синтеза диоксимина родия (III), содержащего две тиоцианатогруппы, к водному раствору тригидрата хлорида родия (III) прибавляли рассчитанное количество азотнокислого серебра. Выпавший AgCl отфильтровывался. К раствору прибавлялся спиртовый раствор диметилглиоксима

(2 моля на 1 г-атом родия) и избыток роданида аммония. Смесь запанвалась в ампулу, которая выдерживалась в течение 12 час. при 110° С. При этом образовывался мелкокристаллический желтый осадок. На фильтре вещество промывалось водой, спиртом и эфиром.

Найдено %: Rh 19,85; N 18,86 (потеря в массе 10,42 при 105°)

NH₄[Rh(SCN)₂(C₄H₇N₂O₂)₂]·3H₂O. Вычислено %: Rh 19,74; N 18,81; H₂O 10,38

Пригодные для рентгеноструктурного исследования монокристаллы были получены при медленном испарении при комнатной температуре раз-

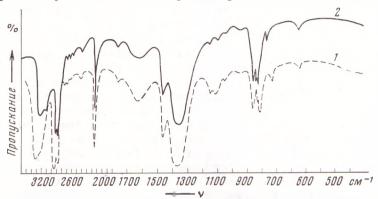


Рис. 2. И.-к. спектры поглощения $[Co(NCS)(NH_3)_5](NO_3)_2$ (1) и $[Rh(NCS)(NH_3)_5](NO_3)_2$ (2)

бавленного водного раствора соли. Выделились ромбические призмы желтого цвета.

Предварительное рентгеноструктурное исследование монокристаллов (*) ноказало, что они изоструктурны диоксиминам кобальта (III) с внутрисферной тиоцианатогруппой.

 $NH_4[Rh(SCN)_2(DH)_2] \cdot 3H_2O: a=9.95\pm0.01 \text{ Å}, b=12.06\pm0.04 \text{ Å}, c=8.25\pm0.01 \text{ Å}$

 ± 0.06 Å, $\beta = 96^{\circ}$; федоровская группа $P2_1/n$, z=2, $\rho = 1.87$ г/см³.

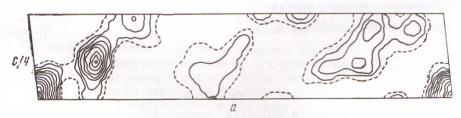


Рис. 3. Проекция $\frac{1}{4}$ ячейки пространства межатомных векторов на плоскость (xy)

 $NH_4[Co(SCN)_2(DH)_2] \cdot 3H_2O: a=10.01\pm0.03 \text{ Å}, b=12.06\pm0.02 \text{ Å}, c=8.50\pm0.02 \text{ Å}$

 ± 0.03 Å, $\beta = 95^{\circ}20'$; федоровская группа $P2_{i}/n$, z = 2, $\rho = 1.53$ г/см³.

Для определения координации тиоцианатогруппы с центральным атомом в диоксиминах Rh(III) были сняты развертки слоевых линий вокруг кристаллографических направлений [010] и [001] в камере фотографирования обратной решетки (к.ф.о.р.) на Мо-излучении. Интенсивности рефлексов h0l и hk0 оценены по маркам почернения с шагом 2^{16} ; для наиболее ярких рефлексов использовались пленки с кратными экспозициями. При выделении амплитуд учитывался лишь угловой фактор LP без поправки на поглощение. Полученные значения $|F|^2$ были использованы для построения патерсоновских проекций $P_0(x, y)$ и $P_0(x, z)$. На рис. 3 и 4 приведены проекции $^{1/4}$ ячейки пространства межатомных векторов

 $NH_{4}[Rh(SCN)_{2}(DH)_{2}]\cdot 3H_{2}O$. Из патерсоновских синтезов следует, что связь тиоцианатогруппы с родием(III) в диоксиминах осуществляется через атом серы.

Сильные максимумы в независимой области проекций функции Патерсона, отвечающие вектору Rh—S, дают следующие значения координат

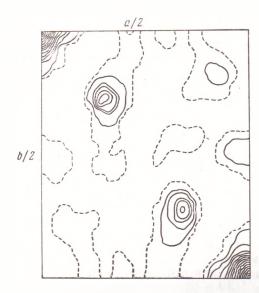


Рис. 4. Проекция $^{1}/_{6}$ ячейки пространства межатомных векторов на плоскость (xz)

атома серы: x=0.155, y=0.137 (проекция на плоскости xy) и x=0.148, z=0.146 (проекция на плоскости xz).

Расстояние Ph—S 2,37 Å (в расчет принято среднее значение координаты x=0,151). Оно хорошо согласуется с суммой ковалентных радиусов 1,32 Å (Rh)+1,04 (S) (9) и со значением Rh—S в кристаллической структуре K_{3} [Rh(SCN) $_{6}$] (10).

Поскольку наименьшая кратность позидий в пространственной группе $C_{2h}{}^{5} = P2_{1}/n$ равна двум (в центрах инверсии) и в ячейке имеются две формульные единицы состава NH₄[Rh(SCN)₂(DH)₂]·3H₂O, то можно считать, что атом родия находится в центре инверсин и, следователькомплекс $[Rh(SCN)_2(DH)_2]^$ центросимметричен. Координационный октаэдр вокруг родия образован четырьмя атомами азота из двух остатков диметилглиоксима, которые, учитывая изоструктурность диоксиминов кобальта (III) и родия (III),

лежат в одной плоскости, и двумя S из тиоцианатогрупп, находящихся в транс-положении.

Таким образом, соединения родия (III) аналогичны с координационными соединениями кобальта (III) в том отношении, что в амминах группа NCS присоединена к металлу через азот, а в диоксиминах эта же группа присоединена к металлу через серу.

Кишиневский политехнический институт им. С. Лазо

Поступило 21 V 1973

Институт химии Академии наук МССР Кишинев

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Т. И. Малиновский, И. Д. Самусь, Н. В. Белов, ДАН, 131, 1327 (1960).

² А. В. Аблов, И. Д. Самусь, ДАН, 146, 1071 (1962).

³ И. Д. Самусь, Н. В. Белов, ДАН, 193, 333 (1970).

⁴ Г. В. Цинцадзе, Автореф. докторской диссертации, Тоилиси, 1971.

⁵ S. А. Јоћ пѕоп, F. Ваѕо lo, Іпоту. Сћет..., 1, 925 (1962).

⁶ И. Б. Барановский, Ю. Я. Харитонов, Г. Я. Мазо, ЖНХ, 15, 1715 (1970).

⁷ А. В. Аблов, Н. Н. Проскина, Л. Ф. Чапурина, Сборн. Колебательные спектры в неорганической химии, «Наука», 1970, стр. 260.

⁸ И. Д. Самусь, А. Л. Уфнаровский, О. А. Болога, IV Всесоюзн. совещ, по применению новейших физ. методов к исслед. коорд. соед., Тез. докл., Кишинев, 1971, стр. 35.

⁹ L. Рач-ling, The Nature of Chem., 3, Ed., Ithaca, 1960.

¹⁰ З. В. Звонкова, ЖФХ, 27, 100 (1953).