УДК 546.791.6'161

ХИМИЯ

Р. Л. ДАВИДОВИЧ, В. В. ПЕШКОВ, член-корреспондент АН СССР Ю. А. БУСЛАЕВ

СИНТЕЗ КОМПЛЕКСНЫХ ФТОРИДОВ УРАНИЛА СОСТАВА (NH_4) $_2M^{11}$ (UO_2F_4) $_2\cdot 6H_2O$ И ИХ СВОЙСТВА

Известно большое число комплексных фторидов уранила с катионами щелочных металлов ($^{1-3}$), аммония (4) и органических оснований (5 , 6). Получены и описаны также диоксотетрафторуранилаты ряда двухвалентных металлов состава $MUO_2F_4\cdot 4H_2O$, где M-Mn, Co, Ni, Cu, Zn, Cd (7 , 8). Однако в литературе отсутствуют сведения о комплексных фторидах уранила, содержащих во внешней координационной сфере одновре-

менно катнопы одно- и двухвалентных металлов.

С целью выяснения возможности получения таких соединений, установления их химического состава и строения, изучено взаимодействие в водном растворе между уранилфторидом и фторидами щелочных металлов (аммония) и двухвалентных металлов, взятых в различных мольных отношениях. При этом было установлено, что индивидуальные кристаллические вещества состава $M_2^{-1}M^{-1}(UO_2F_4)_2 \cdot 6H_2O$ образуются при мольном отношении компонентов $UO_2F_2: M^{-1}F: M^{-1}F_2$ в растворе, равном 1:1:0,65-0,60. Настоящее сообщение посвящено синтезу и исследованию свойств комплексных фторидов уранила состава $(NH_4)_2M^{-1}(UO_2F_4)_2 \cdot 6H_2O$, где M^{-1} —Со, Ni, Cu, Zn, Cd. Исходными веществами для синтеза названных соединений служили уранилфторид, полученный путем растворения трехокиси урана в слабом растворе плавиковой кислоты с последующим упариванием раствора досуха и обезвоживанием образовавшегося продукта при 300° С, фторид аммония марки о.ч., гидраты дифторидов двухвалентных металлов, а также 20% раствор фтористоводородной кислоты.

Синтез комплексных фторидов уранила состава $(NH_4)_2M^{II}(UO_2F_4)_2 \cdot 6H_2O$ осуществлялся следующим образом. Навеску UO_2F_2 (0,01 моля) растворяли в небольшом количестве воды и к полученному раствору добавляли раствор $M^{II}F_2$ (0,007—0,008 моля) в 30—35 мл 20% фтористовородной кислоты, а также необходимое количество NH_4F (0,01 моля), растворенное в воде. Общий объем полученного раствора при этом составлял 70—80 мл. Раствор упаривали на водяной бане примерно до $^{1}/_3$ первоначального объема и оставляли для кристаллизации соли. Выпавшие кристаллы отделяли фильтрованием под вакуумом через платиновую воронку Бюхнера, промывали на воронке метиловым спиртом и высушивали на

воздухе до постоянной массы.

В синтезированных соединениях фтор определяли методом пирогидролиза (*) с последующим осаждением его в виде PbClF, уран — восстановлением амальгамой цинка до U(IV) и титрованием 0.1N раствором KMnO₄, аммиак — по методу Кьельдаля (10), двухвалентный металл — метод комплексонометрического титрования (11), а содержание воды — термогравиметрическим методом. Результаты химического анализа синтезированных комплексных фторидов уранила состава $(NH_4)_2M^{11}(UO_2F_4)_2 \cdot 6H_2O$ приведены в табл. 1. Полученные соединения представляют собой окрашенные кристаллические вещества, умеренно растворимые в воде и устойчивые при хранении на воздухе.

Рентгенографическое исследование соединений $[NH_4)_2M^{II}(UO_2F_4)_2 \cdot 6H_2O$ проведено по методу порошка. Рентгенограммы $(NH_4)_2M^{II}(UO_2F_4)_2 \cdot 6H_2O$

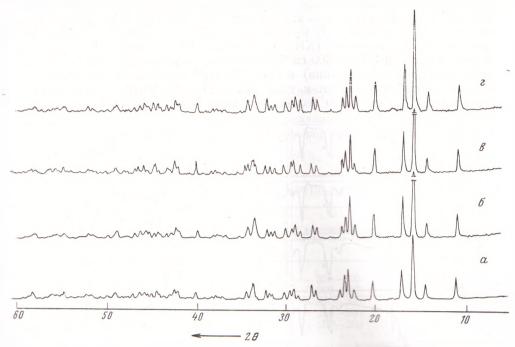


Рис. 1. Дифрактограммы $(NH_4)_2M^{II}(UO_2F_4)_2 \cdot 6H_2O$: $a - (NH_4)_2Co(UO_2F_4)_2 \cdot 6H_2O$; $b - (NH_4)_2Ni(UO_2F_4)_2 \cdot 6H_2O$; $a - (NH_4)_2Co(UO_2F_4)_2 \cdot 6H_2O$; $a - (NH_4)_2Co(UO_2F_4)_2 \cdot 6H_2O$; $a - (NH_4)_2Co(UO_2F_4)_2 \cdot 6H_2O$

 $^{\cdot}$ 6H $_2$ O снимали на дифрактометре ДРОН-1 в Си K_{α} -излучении. По данным (12), кристаллы (NH $_4$) $_2$ Ni(UO $_2$ F $_4$) $_2$ ·6H $_2$ O относятся к моноклинной сингонии, пространственной группе $P2_4/b$. Найденные параметры элементарной ячейки (NH $_4$) $_2$ Ni(UO $_2$ F $_4$) $_2$ ·6H $_2$ O равны: a=6,572; b=14,807; c=10,342 Å; γ =123°6′; z=2. Исходя из значительного сходства рентгенограмм всех синтезированных комплексных фторидов уранила состава (NH $_4$) $_2$ М^{II}(UO $_2$ F $_4$) $_2$ ·6H $_2$ O (рис. 1), можно заключить, что они образуют изоструктурный ряд и имеют близкие значения параметров решеток.

 $\label{eq:Tading} \begin{picture}(100,0) \put(0.00,0) \put(0.00,0)$

	NH4,	вес.%	MII, B	ec, %	U, в	ec.%	F , в	ec.%	H ₂ O,	вес.%
Соединение	най- дено	вычи-	най- дено	вычи- слено	най- дено	вычи- слено	най- дено	вычи-	най- дено	вычи- слено
(NH ₄) ₂ Co (UO ₂ F ₄) ₂ ·	3,83	4,03	6,31	6,58	53,51	53,18	16,90	16,97	11,98	12,07
(NH ₄) ₂ Ni (UO ₂ F ₄) ₂ · ·6H ₂ O	3,92	4,03	-6,55	6,56	52,80	53,19	17,15	16,98	12,05	12,07
$(NH_4)_2Cu(UO_2F_4)_2$.	4,11	4,00	6,77	7,06	53,00	52,90	16,61	16,89	12,03	12,01
$^{\cdot 6 H_2 O}_{(NH_4)_2 Zn (UO_2 F_4)_2}$	3,80	4,00	7,10	7,25	52,00	52,80	16,90	16,85	11,88	11,98
·6H ₂ O (NH ₄) ₂ Cd (UO ₂ F ₄) ₂ · ·6H ₂ O	3,77	3,80	11,81	11,85	50,01	50,18	16,50	16,02	11,05	11,39

M.-к. спектры * $(NH_4)_2M^{II}(UO_2F_4)_2\cdot 6H_2O$ (рис. 2) весьма сходны между собой. Асимметричным валентным колебаниям групп UO_2^{2+} в спектрах $(NH_4)_2M^{II}(UO_2F_4)_2\cdot 6H_2O$ отвечают интенсивные полосы с максимумом

^{*} И.-к. спектры соединений $(NH_4)_2M^{11}(UO_2F_4)_2\cdot 6H_2O$ снимали на спектрометре UR-20 по методике суспензий в вазелиновом и фторированном маслах.

при 900 см $^{-4}$. Симметричные валентные колебания UO_2^{2+} лежат при 825 см $^{-4}$ и представлены в и.-к. спектрах $(NH_4)_2M^{II}(UO_2F_4)_2\cdot 6H_2O$ полосами малой интенсивности. К колебаниям координированных катионом M^{2+} молекул воды в спектрах $(NH_4)_2M^{II}(UO_2F_4)_2\cdot 6H_2O$ относятся полосы, лежащие в области 3000-3600 см $^{-1}$ (валентные колебания), 1600-1700 см $^{-1}$ (деформационные колебания) и 600-740 см $^{-1}$ (внеплоскостные деформационные колебания). В и.-к. спектрах $(NH_4)_2M^{II}(UO_2F_4)_2\cdot 6H_2O$ полосы, относящиеся к валентным колебаниям пона NH_4^+ , налагаются на полосы

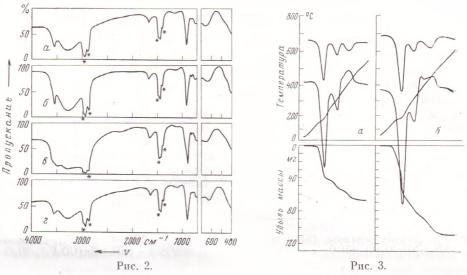


Рис. 2. И.-к. спектры $(NH_4)_2M^{11}(UO_2F_4)_2 \cdot 6H_2O$. Обозначения те же, что на рис. 1 Рис. 3. Дериватограммы $(NH_4)_2Co(UO_2F_4)_2 \cdot 6H_2O$ (a) и $(NH_4)_2Ni(UO_2F_4)_2 \cdot 6H_2O$ (б)

валентных колебаний молекул H_2O , поэтому определить их положение в спектрах исследованных соединений не представляется возможным. Из спектров, снятых во вторированном масле, установлено, что деформационные валентные колебания иона NH_4^+ в $(NH_4)_2M^{11}(UO_2F_4)_2\cdot 6H_2O$ имеют обычное для аммонийных солей значение 1420-1425 см $^{-1}$.

Термическая устойчивость синтезированных соединений исследовалась методами термогравиметрии. На рис. З приведены термогравиграммы солей $(NH_4)_2Co(UO_2F_4)_2\cdot 6H_2O$ (навеска 0,292 г) и $(NH_4)_2Ni(UO_2F_4)_2\cdot 6H_2O$ (навеска 0,473), полученные на дериватографе системы Ф. Паулик, И. Паулик и Л. Эрдей в точке осущенного гелия. Термогравиграммы ос-

тальных исследованных соединений аналогичны приведенным.

Процесс термического разложения комплексных фторидов уранила состава $(NH_4)_2M^{\Pi}(UO_2F_4)_2 \cdot 6H_2O$, как следует из простой и дифференциальной кривых убыли массы (см. рис. 3), протекает в три этапа, на что указывает также наличие трех эффектов — пвух эндотермических и одного экзотермического на дифференциальной кривой нагревания. Дегидратация $(NH_4)_2M^{11}(UO_2F_4)_2\cdot 6H_2O$, за исключением соли меди, происходит в одну стадию. Этому процессу отвечает первый эндотермический эффект на термогравиграммах. Соответствующие данному эффекту убыли массы хорошо согласуются с содержанием воды, вычисленным для соединений $(NH_4)_2M^{II}(UO_2F_4)_2 \cdot 6H_2O$ (см. табл. 1). Второй эндотермический эффект обусловлен разложением безводных солей. Найденная убыль массы, соответствующая эффекту, указывает на отщепление от $(NH_4)_2M^{11}(UO_2F_4)_2$. $\cdot 6H_2O$ одной молекулы NH_4F (для $(NH_4)_2Ni(UO_2F_4)_2\cdot 6H_2O$ найдено 4.2%, вычислено для одной молекулы NH, F 4,14%). Дальнейшее разложение солей протекает с выделением тепла (экзотермический эффект) и сопровождается отщеплением еще одной молекулы NH₄F.

На основании проведенного исследования термическое разложение $(NH_4)_2M^{11}(UO_2F_4)_2\cdot 6H_2O$ можно представить следующей схемой:

$$\begin{split} &(NH_4)_1 M^{II} (UO_2 F_4)_2 \cdot 6H_2 O \xrightarrow{-6H_2 O} (NH_4)_2 M^{II} (UO_2 F_4)_2 \xrightarrow{-NH_4 F} \\ &\to NH_4 M^{II} (UO_2)_2 F_7 \xrightarrow{-NH_4 F} MF_2 (amop \varphi.) + UO_2 F_2. \end{split}$$

Промежуточные и конечные продукты разложения $(NH_4)_2M^{II}(UO_2F_4)_2 \cdot 6H_2O$ были идентифицированы методами рентгенофазового анализа и и.-к. спектроскопии.

 $\label{eq:Tadin} T\, a\, б\, \pi\, \pi\, \mu\, a\, \, 2$ Температуры разложения (NH4) $_2M^{11}(UO_2F_4)\,_2\cdot 6H_2O$ (^C)

Соединение	Удаление 6Н2О	Удаление первой молекулы NH₄F	Удаление второй молекулы NH ₄ F
$\begin{array}{c} (NH_4)_2Ni(UO_2F_4)_2\cdot 6H_2O \\ (NH_4)_2Co(UO_2F_4)_2\cdot 6H_2O \\ (NH_4)_2Cu(UO_2F_4)_2\cdot 6H_2O \\ (NH_4)_2Zn(UO_2F_4)_2\cdot 6H_2O \\ (NH_4)_2Cd(UO_2F_4)_2\cdot 6H_2O \end{array}$	130—185 125—175 110—130; 130—170 120—150 90—115	$\begin{array}{c} 260 - 300 \\ 260 - 300 \\ 240 - 290 \\ 240 - 290 \\ 200 - 280 \end{array}$	$\begin{array}{c} 360 - 450 \\ 350 - 410 \\ 330 - 410 \\ 330 - 390 \\ 320 - 380 \end{array}$

Поведение комплексных фторидов уранила состава $(NH_4)_2M^{11}(UO_2F_4)_2 \cdot 6H_2O$ при нагревании сходно с поведением фторуранилатов аммония, термическая устойчивость которых описана в (4). В обоих случаях разложение обезвоженных солей характеризуется последовательным отщеплением NH_4F и протекает в две стадии, первая из которых сопровождается поглощением, а вторая — выделением тепла.

В табл. 2 приведены температурные интервалы каждого из последовательных этапов термического разложения $(NH_4)_2M^{11}(UO_2F_4)_2 \cdot 6H_2O$. Из данных этой таблицы следует, что как температура дегидратации, так и температура разложения находятся в зависимости от размера катиона M^{2+} и с увеличением радиуса M^{2+} понижаются.

Институт общей и неорганической химии им. Н. С. Курнакова Академии наук СССР Москва Поступило 26 III 1973

Институт химии Дальневосточного научного центра Академии наук СССР Владивосток

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Вакет, J. Chem. Soc., **35**, 760 (1879). ² Р. Л. Давидович, В. И. Сергиенко, Т. А. Калачева, Изв. АН СССР, сер. хим., 1968, 1678. ³ Л. Л. Зайцева, Л. В. Липис и др., ЖНХ, 7, 1538 (1962). ⁴ Р. Л. Давидович, Д. Г. Эпов, Ю. А. Буслаев, ДАН, 193, № 4, 822 (1970). ⁵ F. Olsson, Zs. anorg. u. allgem. Chem., 187, 112 (1930). ⁶ М. С. Сhakravorti, N. Вапфуораф hyay, J. Inorg. and Nucl. Chem., 34, 2867 (1972). ⁷ Р. Л. Давидович, Ю. А. Буслаев, Л. М. Мурзаханова, Изв. АН СССР, сер. хим., № 3, 687 (1968). ⁸ А. А. Удовенков, Ю. Н. Михайлов и др., ЖНХ, 17, № 10, 2746 (1972). ⁹ J. С. Warf, W. D. Cline, R. D. Теvева ugh, Anal. Chem., 26, 342 (1954). ¹⁰ И. М. Кольтгоф, Е. Б. Сендэл, Количественный анализ, 1938, стр. 497. ¹¹ Р. Пршибил, Комплексоны в химическом апализе, ИЛ, 1960. ¹² Ю. Н. Михайлов, А. А. Удовенко и др., ЖСХ, 14, № 1, 170 (1973).