УДК 517.12:519.51

MATEMATUKA

Н. Н. НЕПЕЙВОДА

ОБ ОДНОМ ОБОБЩЕНИИ ИЕРАРХИИ КЛИНИ — МОСТОВСКОГО

(Представлено академиком А. Н. Колмогоровым 27 XII 1972)

В данной статье иерархия арифметических формул по числу перемен кванторов, предложенная Клини и Мостовским, обобщается на случай гиперарифметических формул с трансфинитным числом перемен кванторов. Устанавливается тесная взаимосвязь между этой перархией и перархией формул разветвленного анализа.

В статье без дополнительных объяснений употребляются понятия и обозначения, введенные в статье (1) за одним исключением: в статье не рассматривается язык П и поэтому слова «формула», «предикатор» и т. д.

означают соответствующие объекты языка Δ .

В дальнейшем нам понадобится более сильное, чем обычно, отношение порядка между клиниевскими ординалами (2).

Это отношение определяется индуктивно.

Определение 1. Конструктивный ординал а мажорируется конструктивным ординалом β ($\alpha \leq \beta$), если выполнено одно из условий:

1) $\alpha = 0$.

2) $\alpha = 3 \cdot 5', \beta = 2^{\delta} \text{ if } \alpha \leqslant_{o} \delta.$ 3) $\alpha = 2^{\gamma}, \beta = 2^{\delta} \text{ if } \gamma \leqslant_{o} \delta.$

4) $\alpha = 3 \cdot 5^l$, $\beta = 3 \cdot 5^d$ и для всех n существует m такое, что $\{l\}(n) \leq o\{d\}(m).$

5) $\alpha = 2^{\gamma}$, $\beta = 3.5^{l}$ и существует n такое, что $\alpha \le o\{l\}$ (n). Будем говорить, что α меньше β ($\alpha <_o \beta$), если $2^{\alpha} <_o \beta$.

При только что определенном порядке обычные функции ординальной суммы ⊕, ординального произведения ⊗ н т. д. являются монотонными по обоим аргументам.

Теорема 1. Принцип трансфинитной индукции.

$$\forall \alpha (\forall \beta <_{\alpha} \alpha P(\beta) \Rightarrow P(\alpha)) \Rightarrow \forall \alpha P(\alpha).$$

Обычным образом введем квантор $\exists X$ как $\forall X$. Определим алгоритм ρ^x A_{-1} , где x — натуральное число, рассматриваемое как гёделев номер кортежа.

$$\rho^0_A_\rightleftharpoons A;$$
 $\rho^{x\bullet[n]}_A_\rightleftharpoons \rho_\rho^x_A__,$ если $\rho^x_A_$ имеет вид $(t\in Q);$
 $\rho^{x\bullet[n]}_A_\rightleftharpoons B(X\mid n),$ если $\rho^x_A_$ имеет вид $\forall XB$ или $\neg \forall X \neg B;$

 $\rho^{x \cdot [n]} \mid A \mid \rightleftharpoons \rho^x \mid A \mid$, если $\rho^x \mid A \mid$ не имеет ни одного из этих видов.

Формула B называется подформулой формулы A, если при некотором $x = B = \rho^x A_{\perp}$.

Определение 2. Формула А является предваренной, если всякая подформула A элементарна либо имеет один из видов: $(t \in Q)$, $\forall YB$, $\exists \ \forall \ Y$ $^-$

Предикатор M имеет предваренную форму, если при каждом n формула

 $(n \subseteq M)$ предваренная.

Следующая лемма утверждает, что всякий предикатор равнозначен предваренному.

Пемма. Для всякого предикатора М можно подобрать предваренный предикатор N такой, что

$$\vdash (n \in M) \Leftrightarrow \vdash (n \in N),$$

$$\dashv (n \in M) \Leftrightarrow \dashv (n \in N).$$

Теперь можно обобщить на формулы языка Δ понятие числа перемен

кванторов в формуле.

Определение 3. Формула D имеет α перемен кванторов, если D предваренная и существует такая функция ϕ , перерабатывающая кортежи натуральных чисел в клиниевские ординалы, что

1) $\varphi(x * y) \leq \varphi(x)$.

2) Если
$$\rho^{x*y} D_{\underline{\ }} = \forall XB, \gamma \rho_{\underline{\ }} D_{\underline{\ }} = \nabla Y \cap C,$$
 то $\varphi(x*y) <_{o} \varphi(x).$

3) Если
$$\rho^{x * y} L D_{\bot} = \neg \forall X \neg B, \ \rho^x L D_{\bot} = \forall Y C, \ \text{то}$$
 $\varphi(x * y) <_o \varphi(x).$

4) $\varphi(0) = \alpha$.

Определение 4. Предикатор M имеет α перемен кванторов, если при каждом n формула $(n \in M)$ имеет α перемен кванторов.

Формула (предикатор) \hat{Q} имеет ограниченное число перемен кванторов, если существует такое α , что Q имеет α перемен кванторов.

Если формула (предикатор) имеет α перемен кванторов и $\alpha \leqslant {}_{0}\beta$, то формула (предикатор) имеет β перемен кванторов; это легко следует из определений.

Tеорема 2. Если M- предикатор и M имеет α перемен кванторов, то можно построить предикатор N, имеющий α перемен кванторов и такой, что

Следовательно, всякий предикатор, имеющий ограниченное число перемен кванторов, пополним до всюду осмысленного. Но, как показано в работе (1), не всякий предикатор пополним. Следовательно, не для всякого предикатора языка Δ можно подобрать равнозначный ему предваренный предикатор N, имеющий ограниченное число перемен кванторов.

Эквивалентность между ограниченностью числа перемен кванторов в предваренной форме и пополнимостью утверждают следующие теоремы.

Теорема 3. Пусть N- предикатор. Если существует такой предикатор M, что M имеет α перемен кванторов ($\alpha \neq 0$) и

то существует предикатор К, имеющий а перемен кванторов и такой, что

$$\vdash n \in N \Leftrightarrow \vdash n \in K,$$
$$\Rightarrow n \in N \Leftrightarrow \Rightarrow n \in K.$$

Теорема 4. Если $\models \forall x (x \in M \supset x \in M)$, то существует предикатор N, имеющий ограниченное число перемен кванторов и такой, что

$$\vdash n \in M \Leftrightarrow \vdash n \in N,$$
$$= \mid n \in M \Leftrightarrow = \mid n \in N.$$

Теоремы 2-4 устанавливают классификацию формул языка Δ по числу перемен кванторов, аналогичную обычной классификации Клини — Мостов-

ского для арифметических формул. Для доказательства нетривиальности

этой иерархни служит следующая

Теорема 5. Для всякого α существует предикатор М, имеющий 2^{lpha} перемен кванторов и такой, что не существует предикатора N, имеющего а перемен кванторов и такого, что

$$\vdash n \in M \Rightarrow \vdash n \in N,$$
$$\vdash n \in M \Rightarrow \exists n \in N.$$

Для всюду осмысленных формул эта иерархия очень тесно связана с иерархией формул разветвленного анализа.

Дадим определение языка разветвленного анализа уровня ω_1 .

Определение 5. Термы обычные арифметические. Переменные делятся на типы и порядки. Переменные первого типа — переменные для натуральных чисел. Переменные второго типа, а-го порядка — фигуры вида X^{α} , Y^{α} , Z^{α} , ..., где α — конструктивный ординал.

 Φ ор м ул ы. а) (t=u), t, u — термы. б) (A=B), A, B — формулы. в) $\forall \mathcal{X}A$, \mathcal{X} — переменная, A — формула.

г) $(t \in \mathfrak{X}^{\alpha}), t - \text{терм}, \mathfrak{X}^{\alpha} - \text{переменная второго типа.}$

Смысл формулы вида $\forall \mathfrak{X}^{\alpha}A$ состоит в наличии общего метода подтверждения всех формул, получающихся замещением в А всех подформул вида $(t \in \mathfrak{X}^a)$ на формулы B(x|t), где B — некоторая α -формула, т. e. формула, содержащая кванторы лишь по порядкам, меньшим а в смысле клиниевского упорядочения (3). В должна содержать лишь одну свободную переменную -x. Смысл квантора по натуральным числам и импликации определяется обычным образом.

Обычным образом введем сокращения \neg , \exists . Формула A разветвленного анализа называется (α, n) -формулой, если A имеет вид $\mathbf{M}_0 \mathcal{X}_0^{\alpha} \dots \mathbf{M}_n \mathcal{X}_n^{\alpha} B$, где \mathbf{M}_i есть \forall или \mathbf{H} , а $B - \alpha$ -формула.

Теорема 6. Если M- предикатор языка Δ , M имеет $\omega \otimes (1 \oplus \alpha) \oplus$ перемен кванторов и истинно $\forall x (x \in M \supset x \in M)$, то существует множество S, определимое в разветвленном анализе (α, n) -формулой и такое, что

$$m \in S \iff \models m \in M$$
.

T е σ р e м a 7. E c n u S - множество, определимое θ разветвленном анализе (α, n) -формулой, то существует предикатор M такой, что M имеет ω ⊗ (1 \oplus α) \oplus n перемен кванторов u

$$\vdash \forall x (x \in M \supset x \in M),$$
$$\vdash m \in M \iff m \in S.$$

Теорема 8 (вырожденный случай). Если

$$\models \forall x (x \in M \supset x \in M)$$

и М имеет п перемен кванторов, то существует такая предваренная арифметическая формула А(х), имеющая п перемен кванторов, что

$$A(m) \Leftrightarrow \vdash (m \in M).$$

Теорема, обратная теореме 8, очевидна.

Таким образом, иерархия арифметических формул по числу перемен кванторов естественно продолжается на все гиперарифметические высказывания.

Московский государственный университет им. М. В. Ломоносова

Поступило 27 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Н. Непейвода, ДАН, 212, № 1 (1973). ² К. Schütte, Beweis Theorie, Berlin, 1960. ³ S. Feferman, J. Symb. Logic, 33, № 1, 2, 193 (1968).