УДК 511

MATEMATUKA

в. а. демьяненко О высоте тэйта

(Представлено академиком И. М. Виноградовым 16 II 1973)

Пусть K- алгебраическое числовое поле степени n и T- эллиптиче-

ская кривая $y^2 = x^3 + \hat{r}x + s$, определенная над этим полем.

В работе (1a) приводится изящное доказательство теоремы Тэйта, дающей информацию о поведении высоты точек на абелевом многообразии. В частности, показывается, что если точки P_i , $i=1,\ 2,\ldots,\ r$, взятые на T, рациональны над заданным полем K, то

$$c_1 < \ln \left\{ H\left(\sum_{i=1}^r t_i P_i\right) \right\} - \sum_{i,j=1}^r \alpha_{i,j} t_i t_j < c_2,$$
 (1)

где $H(\sum_{i=1}^r t_i P_i)$ — высота Вейля точки $\sum_{i=1}^r t_i P_i$, c_1 и c_2 — некоторые константы, зависящие лишь от r, s и K.

Пусть $\sum\limits_{i=1}^r t_i P_i = \{x_{(ti)}, y_{(ti)}\}$. Согласно формулам сложения точек на кривой T

$$x_{(m_{i}+n_{i})} = \frac{\mp 2y_{(m_{i})}y_{(n_{i})} + (x_{(m_{i})} + x_{(n_{i})})(x_{(m_{i})}x_{(n_{i})} + r) + 2s}{(x_{(n_{i})} - x_{(m_{i})})^{2}}, \qquad (2)$$

$$y_{(m_{i}+n_{i})} = \frac{(x_{(m_{i})} + 3x_{(n_{i})})(ry_{(m_{i})} + x_{(m_{i})}^{2}y_{(n_{i})}) + 4s(y_{(m_{i})} + y_{(n_{i})})}{(x_{(n_{i})} - x_{(m_{i})})^{3}} + \frac{(3x_{(m_{i})} + x_{(n_{i})})(x_{(n_{i})}^{2}y_{(m_{i})} + ry_{(n_{i})})}{(x_{(n_{i})} - x_{(m_{i})})^{3}}.$$

Поэтому

$$x_{(m_{i}+n_{i})}x_{(m_{i}-n_{i})} = \frac{(x_{(m_{i})}x_{(n_{i})}-r)^{2}-4s(x_{(m_{i})}+x_{(n_{i})})}{(x_{(n_{i})}-x_{(m_{i})})^{2}},$$

$$y_{(m_{i}+n_{i})}y_{(m_{i}-n_{i})} = \frac{x_{(m_{i})}^{3}x_{(n_{i})}^{3}+r(x_{(m_{i})}x_{(n_{i})}-r)(x_{(m_{i})}^{2}+3x_{(m_{i})}x_{(n_{i})}+x_{(n_{i})}^{2})}{(x_{(n_{i})}-x_{(m_{i})})^{3}} + \frac{s(x_{(m_{i})}+x_{(n_{i})})(x_{(m_{i})}^{2}+8x_{(m_{i})}x_{(n_{i})}+x_{(n_{i})}^{2}-2r)-r^{3}-8s^{2}}{(x_{(n_{i})}-x_{(m_{i})})^{3}}.$$

$$(3)$$

Пусть $u_{(m_i)}$, $v_{(m_i)}$, $w_{(m_i)}$ — произвольным образом выбранные целые числа из поля K, удовлетворяющие равенствам $x_{(m_i)} = u_{(m_i)} / w_{(m_i)}$, $y_{(m_i)} = v_{(m_i)} / w_{(m_i)}$ и (e_i) — система абсолютных наименьших вычетов индексов (m_i)

по mod 2. Тогда, ввиду (3), координатам точек $\sum_{i=1}^r m_i P_i$ можно поставить в соответствие тройку чисел $X_{(m_i)}$, $Y_{(m_i)}$, $Z_{(m_i)}$ по следующим рекуррент-

$$\begin{split} x_{(m_i)} = & X_{(m_i)} / Z_{(m_i)}^2, \quad y_{(m_i)} = Y_{(m_i)} / Z_{(m_i)}^3, \\ X_{(m_i)} X_{(e_i)} = & (X_{(\alpha_i)} X_{(\beta_i)} - r Z_{(\alpha_i)}^2 Z_{(\beta_i)}^2)^3 - 4s (X_{(\alpha_i)} Z_{(\beta_i)}^2 + X_{(\beta_i)} Z_{(\alpha_i)}^2) Z_{(\alpha_i)}^2 Z_{(\beta_i)}, \\ Y_{(m_i)} Y_{(e_i)} = & X_{(\alpha_i)}^3 X_{(\beta_i)}^3 + r (X_{(\alpha_i)} X_{(\beta_i)} - r Z_{(\alpha_i)}^2 Z_{(\beta_i)}^2) (X_{(\alpha_i)}^2 Z_{(\beta_i)}^4) + \\ + 3X_{(\alpha_i)} X_{(\beta_i)} Z_{(\alpha_i)}^2 Z_{(\beta_i)}^2 + X_{(\beta_i)}^2 Z_{(\alpha_i)}^4) + s (X_{(\alpha_i)} Z_{(\beta_i)}^2 + X_{(\beta_i)} Z_{(\alpha_i)}^2) (X_{(\alpha_i)}^2 Z_{(\beta_i)}^4) + \\ + 8X_{(\alpha_i)} X_{(\beta_i)} Z_{(\alpha_i)}^2 Z_{(\beta_i)}^2 + X_{(\beta_i)}^2 Z_{(\alpha_i)}^4 - 2r Z_{(\alpha_i)}^4 Z_{(\beta_i)}^4) - (r^3 + 8s^2) Z_{(\alpha_i)}^8 Z_{(\beta_i)}^6, \\ + 8X_{(\alpha_i)} X_{(\beta_i)} Z_{(\alpha_i)}^2 Z_{(\beta_i)}^2 + X_{(\beta_i)}^2 Z_{(\alpha_i)}^2 - 2r Z_{(\alpha_i)}^4 Z_{(\beta_i)}^4) - (r^3 + 8s^2) Z_{(\alpha_i)}^8 Z_{(\beta_i)}^6, \\ Z_{(m_i)} Z_{(e_i)} = & \begin{cases} X_{(\beta_i)} Z_{(\alpha_i)}^2 - X_{(\alpha_i)} Z_{(\beta_i)}^2 & \text{inpin} \ (e_i) \neq (0), \\ 2Y_{(m_i/2)} Z_{(m_i/2)} & \text{inpin} \ (e_i) = (0); \end{cases} \\ (\alpha_i) = & (m_i + e_i)/2), \quad (\beta_i) = & (m_i - e_i)/2, \\ X_{(e_i)} = & u_{(e_i)}/d_{(e_i)}, \quad Y_{(e_i)} = & v_{(e_i)}/d_{(e_i)}, \quad Z_{(e_i)} = & w_{(e_i)}/d_{(e_i)}, \end{cases} \\ d_{(e_i)} = & (u_{(e_i)}, v_{(e_i)}, w_{(e_i)}). \end{split}$$

Пусть $|N^{-1}(X_{(m_i)}^3, Y_{(m_i)}^2, Z_{(m_i)}^6)| = H_0$ и $\max\{|X_{(m_i)}^{(j)}|^3, |Y_{(m_i)}^{(j)}|^2, |Z_{(m_i)}^{(j)}|^6\} =$

$$=H_{j}$$
. Очевидно, $H=\prod_{s=0}^{n}H_{s}$.

Так как $(u_{(e_i)}, v_{(e_i)}, w_{(e_i)})$ определено лишь с точностью до единиц поля K, то выбор H, будет неоднозначным. Поэтому будем брать такие значения $(u_{(e_i)}, v_{(e_i)}, w_{(e_i)})$, при которых $\sum_{j=1}^n H_j$ достигает своего минимума. В этом случае аналогично (1) будем иметь

$$c_{1,j} < \ln \left\{ H_j \left(\sum_{i=1}^r m_i P_i \right) \right\} - \sum_{i,s=1}^r \alpha_{j,s} m_j m_s < c_{2,j},$$

где $c_{1, j}, c_{2, j}$ — некоторые константы, зависящие лишь от $r^{(j)}, s^{(j)}, K^{(j)}, j=1, 2, \ldots, n$.

Таким образом, высоту Тэйта h можно разложить на компоненты h_j , j= =1, 2, . . . , n, по сопряженным полям $K^{(j)}$ таким образом, чтобы $h=\sum\limits_{i=1}^n h_i$

и каждая из компонент h_i обладала квадратичностью относительно группового закона сложения точек.

Полученный результат имеет приложения к арифметическим вопросам теории алгебраических кривых. Рассмотрим некоторые из них.

Л. Морделл (2) предположил, что на всякой кривой рода g>1 существует лишь конечное число рациональных точек. Как известно, самый сильный результат на пути доказательства этой гипотезы был получен Ю. И. Маниным (16), который установил ее справедливость над функциональным полем (совсем недавно доказательство указанного результата Ю. И. Манина было упрощено А. Н. Паршиным (4)). Для наиболее трудного «числового случая» гипотезы Л. Морделла нами было доказано (5), что всякая кривая Φ , допускающая над полем K группу отображений G ранга R на одну и ту же эллиптическую кривую T ранга r, имеет конечное число K-точек, если только R>r. Впоследствии доказательство этого фак-

та было упрощено Дж. Касселсом (3) и распространено на якобиевы многообразия Ю. И. Маниным (18).

Квадратичность компонент h_i относительно группового закона сложе-

ния точек на T позволяет доказать следующую более общую теорему.

Теорема 1. Если кривая Φ допускает над K группы отображений $G_i, i=1, 2, \ldots, t$, рангов R_i на эллиптические кривые T_i рангов r_i , бирационально изоморфные над расширениями K, то Φ имеет конечное число Kточек, если только $R_i > r_i$ для некоторого $i \in (1, 2, \ldots, t)$ или же

$$\left(\sum_{i=1}^{t} R_i + 1 \atop 2\right) > \sum_{i=1}^{t} r_i R_i.$$

Для иллюстрации этой теоремы укажем два конкретных примера.

Пример 1. Если над полем рациональных чисел сумма рангов кривых $u^4+1=\alpha v^2$, $u^4+v^2=\alpha$ не превышает 3, то кривая $x^4+y^4=\alpha$ имеет конечное число рациональных точек.

Пример 2. Если сумма рангов кривых $u^3+v^2=\alpha$, $u^3+v^2=-\alpha^2$, $u^3+v^2=\alpha^3$ над полем рациональных чисел не превышает 8, то кривая x^6+

 $+y^6 = \alpha$ имеет конечное число рациональных точек.

Пусть $f_m(x, y)$ — бинарная однородная форма степени m относительно переменных x и y. С использованием разложения высоты Тэйта на компоненты показываются еще две теоремы.

Теорема 2. Если r — ранг кривой T: $f_3(u,v) = A$ над K, то существует такая константа c(r,n), зависящая лишь от r u n, что число целых Kточек на T со взаимно простыми координатами не превосходит c(r,n).

Теорема 3. Если r — ранг кривой $f_4(u, 1) = Av^2$ над K, то существует такая константа c(r, n), зависящая лишь от r и n, что число целых K-точек на T: $f_4(x, y) = A$ не превосходит c(r, n).

Заметим, что на кривой $f_4(x, y) = A$ учитываются также целые точки и

с не взаимно простыми координатами.

Из теорем 2 и 3 вытекают

Следствие 1. Пусть $K(s_1, s_2, \ldots, s_n)$ — noлe, получаемое присоеди-

нением к K корней уравнения $f_m(s) = 0$.

Тогда число целых К-точек на кривой $f_m(x, y) = 1$ не превышает константы c(r, m, n), зависящей лишь от r, m и n, где r — наименьший над

полем
$$K(s_1, s_2, \ldots, s_m)$$
 из рангов кривых $\prod\limits_{s=1}^4 (u-s_i) = \varepsilon v^2, \prod\limits_{s=1}^3 (u-s_i v) = \varepsilon$

 $(\varepsilon - e\partial u н u u a u s K(s_1, s_2, \ldots, s_m)).$

Спедствие 2. Если над алгебраическим числовым полем K ранги кривых $f_3(u, v) = A$, $f_4(u, 1) = Av^2$ ограничены равномерно, то и число це-

лых К-точек на них равномерно ограничено.

Спедствие 3. Если число целых K-точек на кривых $f_3(u,v)=A$, (u,v)=1, $f_4(x,y)=A$ ограничено неравномерно, то существуют такие кривые, ранги которых над фиксированным полем K превышают произвольное наперед заданное число c.

Институт математики и механики Уральского научного центра Академии наук СССР Свердловск Поступило 13 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. И. Манин, Изв. АН СССР, a) 27, в. 6, 1395 (1963); б) 28, в. 6, 1363 (1964); в) 33, в. 3, 459 (1969). ² L. Mordell, Proc. Cambr. Phil. Soc., 21, 179 (1922). ³ J. W. S. Cassels, J. London Math. Soc., 43, 61 (1968). ⁴ А. Н. Паршин, УМН, 27, в. 4 (1972). ⁵ В. А. Демьянснко, Изв. АН СССР, 30, в. 5, 1373 (1966).