УДК 517.948.3

MATEMATUKA

В. Б. ДЫБИН, В. Н. ГАПОНЕНКО

КРАЕВАЯ ЗАДАЧА РИМАНА С КВАЗИПЕРИОДИЧЕСКИМ ВЫРОЖДЕНИЕМ КОЭФФИЦИЕНТОВ

(Представлено академиком В. С. Владимировым 12 II 1973)

В пространстве $L_2(-\infty, \infty)$ рассматривается следующая краевая задача:

$$A_1(x)P^+\Psi(x) + A_2(x)P^-\Psi(x) = B(x), \quad -\infty < x < \infty,$$
 (1)

где

$$P^{\pm}\Psi = \pm \frac{1}{2} \Psi\left(x\right) + \frac{1}{2\pi i} \int_{-\infty}^{\infty} \Psi\left(t\right) (t-x)^{-1} dt.$$

Среди большого количества работ, посвященных изучению оператора (1), отметим исследования (1-6), на результаты которых мы будем опираться в дальнейшем. В частности, если функции $A_{1,2}(x)$ принадлежат прямой сумме двух алгебр: алгебры B почти-периодических в смысле Бора функций и алгебры R_0 непрерывных функций, представимых в виде абсолютно сходящегося интеграла Фурье, то краевая задача (1) тесно связана с интегрально-разностными уравнениями, рассмотренными И. Ц. Гохбергом и И. А. Фельдманом (4). Основной результат, вытекающий для нее из указанной работы, состоит в том, что условие $\inf_{-\infty < x < \infty} |A_1(x)A_2(x)| \neq 0$ яв-

ляется необходимым и достаточным, для того чтобы оператор (1) был

 Φ_{\pm} - или Φ -оператором.

Мы изучаем такой случай нарушения этого условия, когда коэффициенты задачи имеют на вещественной оси счетное множество степенных нулей, распределение которых определяется следующим представлением функций $A_{1,2}(x)$:

$$A_1(x) = (1 - e^{ix\alpha})\widetilde{A}_1(x), \quad A_2(x) = (1 - e^{-ix\beta})\widetilde{A}_2(x),$$
 (2)

где α , β — положительные вещественные числа, $\overline{A}_i(x)$ \in B \dotplus R_0 , i = 1, 2, $\inf_{-\infty < x < \infty} |\overline{A}_1(x)\overline{A}_2(x)| \neq 0$. Из (2) следует, что нули функций $A_{1,2}(x)$ рас-

пределены периодически и имеют точку сгущения на ∞.

Построено общее решение задачи (1) с указанием необходимых и достаточных условий ее разрешимости. Рассматривая оператор, порожденный левой частью уравнения (1), из пространства $L_2(-\infty, \infty)$ в некоторое более узкое банахово пространство $DL_2(-\infty, \infty)$, получаем, что он становится Φ_{+-} , Φ_{--} или Φ_{-} -оператором. Пространство DL_2 строится эффективно.

Кроме того, рассматривается случай квазипериодического распределения нулей, т. е. такого распределения, которое некоторым дробно-линейным преобразованием вещественной прямой в себя переводит это распределение в периодическое.

1. Классы функций. Вспомогательные предложения. Через $E_2\{a,\ b\}$ обозначим класс целых функций $\Omega(x)$, представи-

мых в виде $\Omega(x)=\int\limits_{a}^{b}\omega\left(t\right)e^{ixt}\,dt$, где $\omega\left(t\right)$ \in $L_{2}(a,\ b)$. Через M_{n} обозначим ли-

неал, натянутый на функции $x^{j}(x+t)^{-n}, j=0, 1, \ldots, n-1.$

Пусть $x_k = 2k\pi/\alpha$, $k \in \mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$. Если функция $\Phi(x) \in L_2(-\infty, +\infty)$

 ∞), все точки x_k являются ее точками Лебега и $\sum\limits_{k=-\infty}^{\infty}|\Phi\left(x_k
ight)|^2<\infty$, то че-

рез $J_{\alpha, \Phi}(x)$ обозначим следующий ряд, сходимость которого понимается в среднеквадратичном:

$$J_{\alpha,\Phi}(x) = \frac{1}{\alpha} \sum_{k=-\infty}^{\infty} \Phi(x_k) \frac{e^{ix\alpha} - 1}{i(x - x_k)}.$$
 (3)

Ряд (3) представляет собой целую функцию класса $E_2\{0,\alpha\}$ и является бесконечномерным аналогом интерполяционного многочлена Эрмита:

 $J_{\alpha,\Phi}(x_k) = \Phi(x_k), k \in \mathbb{Z}.$

Пусть $a_k = (x_k + x_{k-1})/2$, $b_k = (x_k + x_{k+1})/2$, $k \in \mathbb{Z}$. Введем семейство проекторов $\{P_k\}$, $P_k \Phi(x) = \varepsilon_k(x) \Phi(x)$, где $\varepsilon_k(x)$ — характеристическая функция интервала (a_k, b_k) . Через $L_2\{2\pi/\alpha\}$ обозначим линеал тех функций $\Phi(x) \in L_2(-\infty, \infty)$, которые обладают следующими свойствами:

а) точки x_k , $k \in \mathbb{Z}$, являются точками Лебега для функции $\Phi(x)$ и

$$\sum_{k=-\infty}^{\infty} |\Phi(x_k)|^{\alpha} < \infty;$$

6)
$$\sum_{k=-\infty}^{\infty} P_k \left[\frac{\Phi(x) - \Phi(x_k)}{x - x_k} \right] \in L_2(-\infty, \infty).$$

Введем оператор N_{α} , определенный на $L_2\{2\pi/\alpha\}$, $N_{\alpha}\Phi(x)=(1-e^{ix\alpha})^{-1}\cdot [\Phi(x)-J_{\alpha,\Phi}(x)]$. В терминах этого оператора описание линеала $L_2\{2\pi/\alpha\}$ дает

T е о р е м а 1. Для того чтобы $\Phi(x) = L_2\{2\pi/\alpha\}$, необходимо и достаточ-

но, чтобы $N_{\alpha}\Phi(x) \in L_2(-\infty, \infty)$.

Из теоремы 1 вытекает, что с введением нормы

$$\|\Phi(x)\| = \|N_{\alpha}\Phi\|_{L_{2}} + \|\{\Phi(x_{h})\}_{h=-\infty}^{\infty}\|_{l_{2}}$$

 $L_2\{2\pi/\alpha\}$ превращается в банахово пространство. Оператор сингулярного

интегрирования ограничен в пространстве $L_2\{2\pi/\alpha\}$.

Линеалы M_n , $E_2\{a,b\}$, $-\infty < a$, $b < \infty$, и $L_2^\pm \{2\pi/\alpha\} = P^\pm (L_2\{2\pi/\alpha\})$ являются подпространствами пространства $L_2\{2\pi/\alpha\}$. Подпространства M_n и $E_2\{0,c\}$, c > 0, являются инвариантными для оператора N_α . При этом для натурального n $N_\alpha(M_n) = M_n$, $N_\alpha(E_2\{0,c\}) = 0$ при $0 \le c \le \alpha$, $N_\alpha(E_2\{0,c\}) = E_2\{0,c-\alpha\}$ при $c > \alpha$.

2. Уравнение (1) в пространстве $L_2(-\infty, \infty)$. Периодическое распределение особенностей. Пусть для коэффициентов задачи (1) выполняется представление (2). Тогда функции $\widehat{A}_i(x)$

допускают факторизацию

$$\widetilde{A}_{i}(x) = \widetilde{A}_{i}^{-}(x) e^{ixc_{i}} \left(\frac{x-i}{x+i}\right)^{n_{i}} \widetilde{A}_{i}^{+}(x), \quad i=1,2,$$

где $[\widetilde{A}_i^{\pm}(x)]^{\pm i} = B + R_0$ и аналитически продолжимы соответственно в верхнюю или нижнюю полуплоскость,

$$c_i = \lim_{l \to \infty} \frac{1}{2l} [\arg a_i(x)]_{-l}^l, \quad n_i = \frac{1}{2\pi} \left[\arg \frac{\widetilde{A}_i(x)}{a_i(x)}\right]_{-\infty}^{\infty},$$

 $a_i(x)$ — почти-периодическая компонента функции $\widetilde{A}_i(x)$ (см. (4)). Рассмотрим следующую краевую задачу:

 $M_1 \Phi = (1 - e^{ix\alpha}) P^+ \Phi - e^{ix\alpha} \left(\frac{x - i}{x + i}\right)^n (1 - e^{-ix\beta}) P^- \Phi = F(x),$ (4)

где $c=c_2-c_1$, $n=n_2-n_1$. Уравнение (1) стандартным преобразованием всегда может быть приведено к виду (4). Для определенности будем преднолагать, что $\alpha > \beta$ и α/β — рациональное число. Тогда существуют такие натуральные числа m и p, что $\beta = (m/p)\alpha$, и следовательно, функции $1-e^{ix\alpha}$, $1-e^{-ix\beta}$ имеют бесконечное множество общих нулей вида $y=2ml\pi/\beta$, $l\equiv Z$.

Основной результат для оператора M_1 состоит в том, что его образявляется подпространством пространства $L_2^+\{2\pi/\alpha\}+L_2^-\{2\pi/\alpha\}$.

Действительно, если выполняется равенство (4) для некоторой функ-

ции $\Phi(x)$ ∈ $L_2(-\infty, \infty)$, то из (4) следует, что

$$(1 - e^{ixz}) P^{+} \Phi(x) = \Omega_{c}(x) + R_{n}(x) + P^{+}F(x),$$
 (5)

$$(1 - e^{-ix}) e^{ixx} \left(\frac{x - i}{x + i}\right)^{n} P^{-}\Phi(x) = \Omega_{c}(x) + R_{n}(x) - P^{-}F(x), \tag{6}$$

где $\Omega_c(x) \in E_2\{0, c\}$, $R_x(x) \in M_x$. Но тогда из теоремы 1 следует, что $P^+F(x) \in L_2\{2\pi/\alpha\}$, $P^-F(x) \in L_2\{2\pi/\beta\}$. Таким образом, условие

$$F(x) = L_2 + \{2\pi/\alpha\} + L_2 - \{2\pi/\beta\}$$
 (7)

необходимо для разрешимости уравнения (4).

Метод которым получается полное описание образа оператора M_1 , продемонстрируем в частном случае, когда $c=\alpha+\beta,\ n=0$ и, следовательно, $R_1(x)=0$

Подействовав на равенство (5) оператором N_{α} , получим

$$P^+\Phi = \Omega_{\dot{p}}(x) + N_{\alpha}P^+F, \tag{8}$$

где $\Omega_{\mathfrak{s}}(x) = N_{\mathfrak{a}}\Omega_{\mathfrak{s}}(x)$. Для того чтобы функция (8) была решением уравнения (5), необходимо и достаточно, чтобы $\Omega_{\mathfrak{s}}(x) = (1 - e^{ixa}) \, \Omega_{\mathfrak{p}}(x) - J_{\mathfrak{a}}_{\mathfrak{p}+\mathfrak{p}}(x)$. Учитывая это и действуя на равенство (6) оператором $N_{\mathfrak{p}}$ *, получаем, что

$$P^{-}\Phi = e^{-ix\alpha}N_{\beta}[(e^{ix\alpha}-1)\Omega_{\beta}(x)+J_{\alpha,P^{*}F}+P^{-}F].$$
(9)

Для того чтобы функция, определяемая равенством (9), была решением уравнения (6), необходимо и достаточно, чтобы $J_{\beta, \, v}$ =0, где $V(x) = (e^{ix\alpha}-1)\,\Omega_{\beta}(x) + J_{\alpha, \, P^*F} + P^-F$. Это возможно тогда и только тогда, когда

$$V(y_j) = 0, \quad y_j = \frac{2j\pi}{\beta}, \quad j \in \mathbb{Z}.$$
 (10)

Так как $e^{iy_j\alpha}=1$, $J_{\alpha,P^*F}(y_j)=[P^+F](y_j)$ для всех j=ml, $l\in \mathbb{Z}$, то последние условия эквивалентны требованию

$$F\left(\frac{2lm\pi}{\beta}\right) = 0, \quad l \in \mathbb{Z}. \tag{11}$$

Условия (10) определяют функцию $\Omega_{\beta}(x)$ с точностью до произвольной целой функции $\Omega_{\beta/m}(x)$ класса $E_2\{0, \beta/m\}$ следующим образом:

$$\Omega_{\beta}(x) = \frac{1 - e^{ix\beta}}{1 - e^{ix\beta/m}} \Omega_{\beta/m}(x) + \frac{1}{\beta} \sum_{\substack{j = -\infty \\ j \neq ml}}^{\infty} u_j \frac{e^{ix\beta} - 1}{i(x - y_j)}, \tag{12}$$

^{*} Оператор N_{β} определяется аналогично оператору N_{α} по системе точек $y_j = -2j\pi/\beta, \ j \leqslant Z.$

$$u_{j} = rac{ \left[P^{-}F
ight] \left(y_{j}
ight) + J_{lpha,P^{*}F}\left(y_{j}
ight)}{1 - e^{iy_{j}lpha}}$$
, при этом $\sum_{\substack{j=-\infty \ j \neq ml}} |u_{j}|^{2} < \infty$.

Таким образом, условия (7), (11) необходимы и достаточны для разре-

шимости уравнения (4).

Сформулируем окончательный результат для задачи (1) в рассмотренном случае. Через DL_2 обозначим банахово пространство функций $B(x) = L_2$ таких, что $\widetilde{B}(x) = [\widetilde{A}_1^-(x)\widetilde{A}_2^+(x)]^{-1}B(x) = L_2^+\{2\pi/\alpha\} + L_2^-\{2\pi/\beta\}, B(y_i) = 0, y_i = 2jm\pi/\beta, j = Z$, с нормой

$$\|B\|_{_{DL_{2}}} = \|P^{+}\widetilde{B}\|_{_{L_{2}^{+}\{2\pi/\alpha\}}} + \|P^{-}\widetilde{B}\|_{_{L_{2}^{-}\{2\pi/\beta\}}}.$$

Теорема 2. Пусть $c=\alpha+\beta$, n=0. Оператор, порожденный левой частью уравнения (1) и рассматриваемый из L_2 в DL_2 , обратим справа. Если $B(x) \in DL_2$, то общее решение уравнения (1) имеет вид (8), (9), (12),

$$e\partial e \ F(x) = e^{-ixe_1} \left(\frac{x+i}{x-i}\right)^{n_1} \widetilde{B}(x).$$

Аналогично рассматриваются случан других возможных значений па-

раметров c и n, а также случай, когда β/α пррационально.

3. Случай квазипериодического распределения особенностей. Пусть a_1 , a_2 , a_3 , a_4 — вещественные числа и $D=a_1a_3-a_2a_4\neq 0$. Оператор

$$[K\Phi](t) = \frac{1}{a_3t + a_4} \Phi\left(\frac{a_1t + a_2}{a_3t + a_4}\right)$$

является линейным непрерывно обратимым в пространстве $L_2(-\infty, \infty)$. Его обратный оператор имеет вид

$$[K^{-1}\Psi](x) = \frac{D}{a_1 - a_3 x} \Psi\left(\frac{a_4 x - a_2}{a_1 - a_3 x}\right)$$

Если $D{>}0$, то $K^{\pm 1}P^{\pm}{=}P^{\pm}K^{\pm 1}$, если $D{<}0$, то $K^{\pm 1}P^{\pm}{=}P^{\mp}K^{\pm 1}$. Пусть, например, $D{>}0$, тогда оператор

$$M_2\Psi = (1 - \exp[i\alpha\varphi(t)])P^+\Psi -$$

$$-\exp[ic\varphi(t)]\left(\frac{\varphi(t)-i}{\varphi(t)+i}\right)^{n}(1-\exp[-i\beta\varphi(t)])P^{-}\Psi,$$

где $\varphi(t) = (a_1t + a_2)/(a_3t + a_4)$ подобен оператору M_1 вида (4), $M_1 = K^{-1}M_2K$. Поэтому все результаты для оператора M_2 очевидным образом вытекают из соответствующих результатов для оператора M_1 .

Аналогичным образом исследуется соответствующий исключительный случай задачи (1) на замкнутом контуре, когда этим контуром является произвольная окружность комплексной плоскости.

Ростовский государственный университет Поступило 8 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ф. Д. Гахов, Краевые задачи, М., 1963. ² Н. И. Мусхелишвили, Сингулярные интегральные уравнения, М., 1968. ³ Б. В. Хведелидзе, Тр. Тбилисск. матем. инст. АН ГрузССР, 23, 3 (1957). ⁴ І. Тs. Gokhberg, І. А. Feldman, Acta sci. mat., Szeged., 30, 3-4, 199 (1969). ⁵ Л. А. Чикин, Уч. зап. Казанск. унив., 113, кн. 10, 57 (1953). ⁶ Ф. Д. Гахов, В. И. Смагина, ДАН, 136, № 6, 1277 (1961).