УЛК 577.42

экология

Член-корреспондент АН СССР А. В. ЖИРМУНСКИЙ, А. Д. КОНЕВ

СВЯЗЬ МЕЖДУ ТЕПЛОУСТОЙЧИВОСТЬЮ КЛЕТОК СУБЛИТОРАЛЬНЫХ МОЛЛЮСКОВ И ТЕМПЕРАТУРНЫМИ УСЛОВИЯМИ ОБИТАНИЯ ВИДОВ В ТЕПЛЫХ ЗОНАХ АРЕАЛОВ

Исследование связи теплоустойчивости клеток (т.к.) с температурными условиями обитания видов в теплых зонах ареалов проводилось на сублиторальных моллюсках дальневосточных морей. Для этой работы были использованы следующие количественные показатели теплоустойчивости клеток: 1) средняя температура, вызывающая термонаркоз клеток мерцательного эпителия жабр при 10-минутной экспозиции (t_{10}) ; 2) угол наклона кривой т.к., оцениваемый с помощью логарифма коэффициента Вант-Гоффа ($\log Q_{10}$). Эти количественные данные были получены из литературного материала ($^{1-4}$) и из ранее не опубликованного экспериментального материала, полученного А. В. Жирмунским. Сведения по географическому распространению и экстремальным (минимальной и максимальной в ареале) глубинам обитания моллюсков взяты из работ (5 , 6), а по моллюскам Neptunea beringiana и Nucella elongata эти сведения были дополнены личными сообщениями А. Н. Голикова и О. Г. Кусакина.

Материал по географическому распространению моллюсков и по их т.к., имеющийся по каждому виду, использовался для определения значений температур придонной воды в любой месяц года на некоторой характеристической глубине (теоретически рассчитываемой глубине в зоне преимущественного расположения животных H_x) у теплой границы ареала данного вида и для расчетных значений т.к. этих видов при любой экспозиции.

Теплая граница ареала данного вида может состоять из нескольких пограничных зон (в качестве пограничной зоны принят самый южный биотоп в ареале данного вида, наблюдающийся при следовании вдоль побережья материка или архипелага). Так как материал для разных видов различается по количеству серий опытов, поставленных для определения т.к. (n_1) , и по количеству пограничных зон на теплой границе ареала (n_2) , где определялась температура придонной воды, то в смысле достоверности используемых количественных характеристик эти виды не могут считаться равновесными. При статистических расчетах каждый вид использовался со своим статистическим весом (k), который условно оценивался с помощью следующего правила

 $k = \text{entier } [0,5(n_1 + n_2)].$

Характеристические глубины определялись в соответствии с методикой, изложенной в (7). В расчетах использовались среднемесячные августовская (t_a) и февральская (t_ϕ) температуры придонной воды на глубине H_x для теплой границы ареала. Придонные температуры определялись по материалам гидрологических наблюдений Тихоокеанского института рыбного хозяйства и океанографии и Дальневосточного научно-исследовательского гидрометеорологического института, а также оценивались по методике, описанной в (8). Среднегодовая температура для теплой границы ареала (\overline{t}) определялась как среднее арифметическое между t_a и t_ϕ , а амплитуда сезонных колебаний температуры — по формуле

$$\theta = t_a - t_{db}$$
.

Температура воды в любой месяц т находилась по формуле

$$t_m = \bar{t} + C_m \cdot \theta$$
,

где C_m — коэффициент, характеризующий месяц m, и выражающий относительное отклонение текущей температуры от среднегодовой (табл. 1).

Таблипа 1

Подготовленные описанным образом данные по т.к. и температурам обитания и ис-Средние значения коэффициента пользуемые в этой работе приведены в табл. 2.

 C_m в различные месяцы для верхней сублиторали дальне-

восточных морей

При исследовании корреляции между т.к. организмов и температурными условиями обитания видов на южных границах их ареалов производилось сопоставление параметров для каждого месяца года. Кроме того оказалось необходимым варьировать способ представления уровня т.к. в некоторой размерности $t_{\rm r}$, учитывающей угол наклона кривой т. к. и экспозицию т:

Месян Месяц (Cm), °C -0,43 -0,50I VII 0.39 H 0.50 VIII III -0.42IX 0.41 IV -0.25X 0.21 V -0.04XI-0.02νİ 0.18 XII

 $t_{\tau i} = t_{10i} - \frac{10 (\lg \tau - 1)}{\lg O_{10i}}$

где i — индекс, соответствующий порядковому номеру вида в табл. 2.

Для отыскания области значений экспозиции т и времени года, в которой постигается максимальная упорядоченность точек графика корреляции между теплоустойчивостью клеток (абсцисса) и температурой воды в море (ордината), применяется преобразование координат. Новые координаты получаются путем поворота осей на угол, равный арктангенсу отношения среднего квадратического отклонения t_m к таковому для t_{τ} .

Для оценки структуры распределения точек на упомянутом графике используется энтропия распределения ординат в новой системе координат этих точек по размерным классам. Как показали расчеты, минимум энтропии наступает в диапазоне значений т от 10^4 до 10^5 мин. и приходится на декабрь — январь или март — апрель. При этом виды распределяются в две группы: 1-я группа (порядковые номера по табл. 2): 2, 3, 4, 5, 6, 8, 10, 11, 14, 15, 16, 17, 18, 20, 22, 23; 2-я группа: 1, 7, 9, 12, 13, 19, 21.

Анализ зависимости упорядоченности структуры распределения точек на графике корреляции между t_m и t_{τ} от τ и времени года и вычленение двух групп видов выявили, что отыскание более точных значений показателя т и времени года, удовлетворяющих максимальной выраженности связи между t_m и t_1 , следует проводить дифференцированно, в каждой группе отдельно.

Для определения значений показателя т и времени года, наилучшим образом способствующих выражению связи между температурными условиями на южных границах ареалов видов t_{mi} и теплоустойчивостью клеток этих видов $t_{\tau i}$ при различных месяцах и значениях τ , рассчитывался коэффициент корреляции между t_m и t_{τ} . Для этих расчетов использовались данные по первой группе моллюсков. Коэффициент корреляции вычислялся с учетом статистических весов численных данных по моллюскам. В первой группе максимальное значение коэффициента корреляции оказалось равным 0,86. (Критерий достоверности: t=8,7, что превышает $t_{st}=3,7$, при котором при числе пар параметров, равном 30, с учетом статистических весов, порог вероятности безошибочных прогнозов равен 0,999.) При этом $C_m =$ =-0.25; $\tau=10^4$ мин. Коэффициенту $C_m=-0.25$ соответствует температура воды в середине апреля либо в середине декабря. Параметру $\tau = 10^4$ мин. соответствует температура, вызывающая термонаркоз клеток мерцательного эпителия за 7 суток, определяемая путем экстраполяции кривой т.к. с учетом температурного коэффициента. Корреляция между t_m и t_{τ} при этих условиях характеризуется уравнением регрессии, которое выражает зависимость между температурой t_m на южной границе ареала и т.к. мерцательного эпителия в следующем виде:

$$t_m = 0.67t_{\tau} - 5.8$$
.

Погрешность определения первого коэффициента при этом равна ± 0.07 , а второго ± 0.25 .

Теплоустойчивость клеток мерпательного эпителия и температурные условия обитания некоторых дальневосточных моллюсков

i	Вид	k _i	H_{xi}	lg Q _{10i}	t_{10i}	\bar{t}_i	θ;
1	Arca boucardi	1 1	4,0	2,82	37,3	24,0	8,0
2	Arvella mandshurica	l î	47,0	3,85	32,7	3,8	2,6
2 3	Callista brevisiphonata	2	35,0	2,57	39,1	14,0	14,3
4	Callithaca adamsi	$\frac{1}{2}$	21,0	2,27	41,0	14,0	16,2
4 5	Chlamys nipponensis	2	6,0	3,46	37,3	17,3	15,7
6	Crassostrea gigas	3	3,0	3,75	44,7	21,6	10,8
7	Crenomytilus grayanus	6	19,0	3,33	37,2	18,0	0,8
8	Glycymeris yessoensis	2	38,0	2,78	38,1	16,1	8.2
9	Mactra sulcataria	2	2,0	2,90	38,0	21,5	11,0
10	Mercenaria stimpsoni	2	16,0	2,13	42,6	17,2	12,1
11	Modiolus difficilis	3	35,0	3,42	37,2	16,0	16,0
12	Modiolus modiolus	4	10,0	2,86	36,1	14,4	0,6
13	Musculus laevigatus	2	81,1	1,89	32,0	10,1	5,7
14	Myzuchopecten yessoensis	2	22,0	2,39	33,9	14,0	16.5
15	Neptuneo beringiana	2	44,0	1,74	34,5	5,7	2.4
1 6	Nucella elongata	1	4,5	3,45	38,1	15,7	10,0
17	Peronidia venulosa	2	1.7	2,56	36,7	17,5	13,5
18	Rapana thomassiana	1	3.0	3,54	41,6	20,4	12.8
19	Saxidomus purpuratus	2	3,5	2,27	42,6	21,5	11,0
20	Spisula sachalinensis	2	5.0	3,15	38,5	16,8	19,2
21	Spisula voji	2	26,0	3,23	29,2	15,5	16,6
22	Swiftopecten swifti	2	34,0	2,95	32,2	13,9	16,1
23	Venerupis japonica	1	0	4,35	41,6	20,4	12,8

 Примечание. i — порядковый номер вида в списке; k_i — статистический вес; H_{xi} — характеристическая глубина (м); Q_{10} — температурный коэффициент процесса теплового повреждения клеток; t_{10i} — температура, вызывающая термонаркоз клеток мерцательного эпителия при 10-минутной экспозиции (°C); t — среднегодовая температура воды на теплой границе ареала (°C); θ — амплитуда сезонных колебаний температуры воды (°C).

Для второй группы моллюсков при $\tau = 10^4$ мин. максимальное значение коэффициента корреляции равно 0,93. (Критерий достоверности t=10,2,что превышает t_{st} =3,8, для которого при числе пар параметров, равном 19 с учетом статистических весов, порог вероятности безошибочных прогнозов равен 0,999). При этом $C_m = -0.40$. Показатель $C_m = -0.40$ отражает температуру воды в марте и в январе. Уравнение регрессии для второй группы имеет вид

$$t_m = 0.92t_{\tau} - 8.5.$$

Погрешность определения первого коэффициента при этом равна ± 0.07 ,

а второго ± 0.35 .

Таким образом, в настоящем исследовании удалось определить условия, при которых достигается наиболее высокая корреляция между теплоустойчивостью клеток и температурой воды на южных границах ареалов видов на характеристических глубинах. При этом обследованные моллюски по характеру связи т.к. с температурными условиями обитания делятся на две группы.

Институт биологии моря Дальневосточного научного центра Академии наук СССР Владивосток

Поступило 25 VI 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. В. Жирмунский, Л. Д. Писарева, ДАН, 133, № 4, 957 (1960).

² А. В. Жирмунский, Сборн. Клетка и температура среды, М.— Л., 1964, стр. 142.

³ А. В. Жирмунский, Журн. общ. биол., 30, 6, 686 (1969). ⁴ В. С. Васильева, Научн. сообщ. Иест. биол. моря, 1973. ⁵ А. Н. Голиков, О. А. Скарлато, Сборн. Моллюски и их роль в биоценозах и формировании фаун, Л., 1967, стр. 5.

⁶ О. А. Скарлато, Двустворчатые моллюски дальневосточных морей СССР (отряд Dysodonta), 1960. ⁷ А. Д. Конев, Научн. сообщ. Инст. биол. моря, 1973. ⁸ А. Д. Конев, Научи. сообщ. Инст. биол. моря, 1973.