## ФИЗИЧЕСКАЯ ХИМИЯ

И. С. ЗАСЛОНКО, С. М. КОГАРКО, Е. В. МОЗЖУХИН, В. Н. СМИРНОВ

## КОЛЕБАТЕЛЬНАЯ НЕРАВНОВЕСНОСТЬ В РЕАКЦИИ N<sub>2</sub>O с CO

(Представлено академиком В. Н. Кондратьевым 28 V 1973)

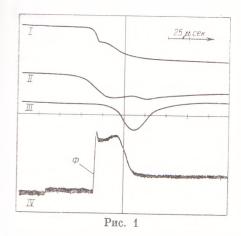
В исследованиях последних лет установлено, что во многих реагирующих системах колебательная энергия является важнейшим фактором, определяющим основные кинетические характеристики реакции ( $^{1}$ ). Особенно сильно колебательная неравномерность проявляет себя в экзотермических реакциях распада, которые подробно изучены в работах ( $^{2-4}$ ). Основные условия осуществления энергетической обратной связи заключаются в высокой скорости образования возбужденных частиц и в эффективном взаимодействии этих частиц с исходными реагентами (обмен энергией или непосредственная реакция).

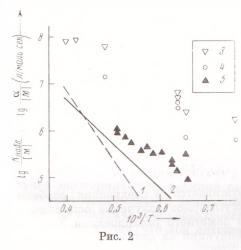
Для выяснения общих закономерностей кинетических процессов с химической активацией очевидна необходимость расширения круга иссле-

дуемых спстем.

Реакция  $N_2O$  с CO имеет с этой точки зрения много достоинств: реакция сильно экзотермична,  $\sim$ 87 ккал/моль; по данным Лина и Бауэра (5), при  $T<1600^\circ$  K скорость диссоциации  $N_2O$  намного ниже скорости обменной реакции

$$N_2O+CO \longrightarrow N_2+CO_2,$$
 (1)


в которой возможно образование колебательных возбужденных продуктов; продукты реакции  $CO_2$  и  $N_2$  и исходные реагенты имеют близкие частоты колебаний и скорость колебательно-колебательного обмена между ними достаточно велика; наши измерения показывают, что при температурах  $1200-2000^\circ$  К время релаксации смеси  $N_2O$  с CO достаточно велико; это также существенно для создания неравновесности.


Опыты проводились в ударной трубе, методика и аппаратура подробно

описаны в работах (3, 4).

Текущая концентрация  $N_2O$  измерялась по поглощению в области 2400 Å, степень колебательного возбуждения реагентов регистрировалась по и.-к. излучению в области 4,7  $\mu$ . Относительная концентрация атомов O определялась по рекомбинационному свечению  $CO+O\longrightarrow CO_2+h_V$ ,  $\lambda\sim 4300$  Å. Опыты проводились со смесями следующего состава:  $N_2O:CO:Ar=1:1:36$  (смесь I) и  $N_2O:CO=1:36$  (смесь II), диапазон температур  $1200-3000^\circ$  K, давление 1.5-3.5 атм. Характер реакции сильно зависит от температуры и состава смеси. Осциллограмма, полученная в одном из онытов, приводится на рис. 1.

Перечислим основные качественные особенности реакции: при  $T < 2000^{\circ}$  К быстрому расходованию  $N_2O$  предшествует период индукции; при  $T \sim 1500^{\circ}$  К в периоде индукции наблюдается некоторое увеличение оптической плотности; интенсивность и.-к. излучения увеличивается в периоде индукции, а затем достигает стационарного уровня, величина которого зависит от состава смеси и температуры; концентрация атомов O в периоде индукции возрастает по закону O схр O, а затем после завершения реакции интенсивность рекомбинационного свечения спадает до





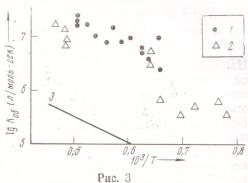



Рис. 1. Осциллограмма одного из опытов в смеси  $N_2O:CO=1:36$ . Развертка времени — слева направо,  $\Phi$  — фронт отраженной волны,  $T=1565^\circ$  K, P=2210 мм. рт. ст. I — и.-к. излучение Co,  $N_2O(\nu_3)$ ,  $CO_2(\nu_3)$ ;  $\lambda$  4,75  $\mu$ , II — рекомбинациопное излучение вдоль оси ударной трубы,  $\lambda=405$  м $\mu$ ; III — рекомбинационное излучение перпендикулярно оси ударной трубы,  $\lambda=435$  м $\mu$ , IV — поглощение  $N_2O$ ,  $\lambda$  240 м $\mu$ 

Рис. 2. Температурная зависимость константы скорости расходования  $N_2O$  ( $k_{\text{наб}\pi} = [N_2O]^{-1} \ d [N_2O]/dt$ ) и экспоненциальной скорости нарастания атомов O,  $[O] \sim \exp(\alpha t)$ . I— константа  $k_2$  по данным  $(^8)$ ; 2— эффективная константа  $k_d$  по данным  $(^6)$ ; 3— измеренные значения  $\alpha/[M]$ ; 4—  $k_{\text{наб}\pi}/[M]$  в смеси  $N_2O:CO=1:36$ ; 5—  $k_{\text{наб}\pi}/[M]$  в смеси  $N_2O:CO:Ar=1:1:36$ 

Рис. 3. Температурная зависимость эффективной константы скороси обменной реакции  $N_2O$  с  $CO.\ 1$ —смесь  $I,\ 2$ —смесь  $II,\ 3-k_1$  по данным (5)

нуля; наблюдаемая константа скорости расходования  $N_2O\left(k_{\text{набл}}=-[N_2O]^{-4}rac{d[N_2O]}{dt}
ight)$  сильно увеличивается в ходе реакции; абсолютные

значения длительности периода индукции достаточно хорошо согласуются с данными Солоухина (6) и Драммонда (7), причем следует иметь в виду, что составы смесей довольно сильно различаются.

Результаты измерений скорости расходования  $N_2O$  при степени превращения  $[N_2O]/[N_2O]_0=0.8$  и характеристические времена парастания интенсивности излучения  $I_{O-CO}$  представлены на рис. 2. Для сравнения приводятся также константы скорости диссоциации  $N_2O$  (6,8).

Молекулы  $N_2O$  расходуются в реакции (1), а также в процессе дис-

социации

$$N_2O+M \longrightarrow N_2+O+M,$$
 (2)

$$O+N_2O \longrightarrow 2NO \text{ или } N_2+O_2. \tag{3}$$

Найдем вклад обменной реакции в общую скорость расходования N<sub>2</sub>O:

$$-d[N_2O]/dt = k_1[N_2O][CO] + k_d[N_2O][M],$$
 (4)

8\* 1139

где  $k_d$  обозначает эффективную константу скорости диссоциации с учетом вторичных реакций и разогрева. Из (4) можно получить

$$k_{i} = \left(\frac{k_{\text{ma6}\pi}}{[M]} - k_{d}\right) - \frac{[M]}{[CO]}. \tag{5}$$

Найденные таким образом значения  $k_1$  представлены на рис. З и относятся к степени превращения  $N_2O$ , равной 20%. Равновесный разогрев в системе при такой степени превращения около  $40^\circ$ , что близко к средней ошноке в определении температуры за ударной волной. В уравнение (5) подставлялись значения  $k_d$ , взятые из (6). Эти данные относятся к моментам времени, соответствующим доле превращения  $N_2O$  как раз в районе 20%. Из рис. 2 видно, что эти значения больше константы скорости первичного мономолекулярного процесса (2), разница обусловлена вторичными реакциями и разогревом.

Отметим, что полученные пами значения  $k_1$  значительно больше единственно известных данных ( $^5$ ). Однако эти данные получены на основании анализа концентраций  $N_2$ О и  $CO_2$  после реакции. Для интерпретации результатов измерений в ( $^5$ ) сделаны упрощающие предположения относительно кинетики реакции, которые не подтверждаются настоящими прямыми спектроскопическими наблюдениями. Поэтому мы считаем, что в ( $^5$ )

получены сильно заниженные значения  $k_1$ .

Существенно, что результаты настоящих измерений не описываются прямой линией в аррениусовских координатах, т. е. эффективная энергия

активации реакции переменна.

Наблюдаемые особенпости реакции №О с СО получают объяснение, если принять во внимание возможность создания колебательной неравновесности в ходе реакции. Наиболее вероятно появление колебательно возбужденных молекул в реакции (1), а также в реакции рекомбинации

$$O+CO+M \longrightarrow CO_2+M. \tag{6}$$

Колебательная перавновесность обнаруживается в следующих особенностях реакции: рост п.-к. излучения (суммарное излучение осцилляторов СО,  $N_2O(\nu_3)$ ,  $CO_2(\nu_3)$ ) перед началом заметного расходования  $N_2O$ , увеличение поглощения  $N_2O$  в периоде индукции за счет того, что коэффициент поглощения  $N_2O$  возрастает с увеличением колебательной температуры; копцентрация атомов O экспоненциально нарастает в периоде индукции; при  $T\sim1800^\circ$  К эффективная скорость обменной реакции практически не зависит от температуры.

Наиболее показательно для подтверждения колебательной перавновесности экспоненциальное нарастание атомов О, обусловленное дополнительной (по отношению к термической) колебательной активацией молекул N<sub>2</sub>O. Предварительный упрощенный кинетический анализ показывает, что экспоненциальное нарастание концентраций активных частиц (в том числе п атомов О) можно объяснить, приняв во внимание процесс обмена

колебательными квантами типа

$$CO_2(v_3=n)+N_2O(v_3=0) \longrightarrow CO_2(v_3=n-m)+N_2O(v_3=m),$$
 (7)

в результате которого m квантов антисимметричного колебания  $\mathrm{CO}_2$  резонансно передается в антисимметричное колебание  $\mathrm{N}_2\mathrm{O}$ . При этом активируется молекула  $\mathrm{N}_2\mathrm{O}$ , а молекула  $\mathrm{CO}_2$  также остается активной для последующей передачи колебательной энергип. Таким образом, процесс (7) представляет собой эпергетический аналог реакции разветвления, а экспоненциальная скорость парастания атомов  $\mathrm{O}$  определяется константой скорости процесса (7).

На основании измерений относительной концентрации атомов О можно определить колебательный разогрев №О. Запишем уравнение кислоро-

да для концентрации О

$$d[O]/dt = k_d(T_v)[N_2O][M] - k_b[O][CO][M].$$
(8)

В (8)  $k_d$  зависит от колебательной температуры  $T_{\rm e}$ . Из анализа литературных данных по константам  $k_{\rm 3}$  и  $k_{\rm 6}$  (8, 9) вытекает, что при  $T \le 1600^{\circ}$  К атомы О в смеси (II) в основном уводятся в реакции (6). В периоде индукции концентрации  $N_{\rm e}O$  и СО постоянны, а концентрация О нарастает по закону  $e^{\alpha t}$ . Пользуясь этими допущениями, получаем соотношение для колебательной температуры

$$T_{v} = \frac{E_{d}}{R} \left\{ \frac{E_{d}}{RT_{0}} + \ln \frac{\left[1 - \exp\left(-k_{6} [\text{CO}][\text{M}]t\right)\right]I_{0}}{\left[1 - \exp\left(-k_{6} [\text{CO}][\text{M}]t_{0}\right)\right]I} \right\}^{-1}, \tag{9}$$

где  $E_d$ — энергия активации реакции (2), I— текущая интенсивность излучения;  $I_0$  и  $t_0$ — соответствуют интенсивности к моменту времени для

минимально обнаружимого сигнала.

Из (9) для опытов в смеси (II) получаем величины  $\Delta T_v$  в интервале  $120-200^\circ$  К. Полученные значения примерно на порядок превышают возможный равновесный разогрев в периоде индукции. На основании измерений  $\Delta T_v$  оценена доля теплоты реакции, переходящая в колебательное

возбуждение реагентов, которая оказалась равной ~50%.

Константы скорости реакции (1), протекающей в неравновесных условиях  $T_v > T$  рассчитывалась в работе (10) с учетом небольцмановского распределения по колебательным уровням и ангармоничности колебаний. Предполагалось, что активационный барьер реакции (1) преодолевается за счет колебательной энергии реагентов. Зависимость неравновесной константы скорости  $k_1$  от ноступательной температуры определяется соотношением  $T_v/T$  и, если это отношение велико,  $k_1$  может даже увеличиваться с понижением поступательной температуры T. Обпаруженный в настоящей работе характер температурной зависимости  $k_1$  качественно согласуется с проведенными расчетами.

Основной качественный вывод работы заключается в том, что, как и в случае экзотермических реакций распада (2, 4), в реакции N<sub>2</sub>O с СО возникающая колебательная неравновесность самым существенным образом влияет на кинетические характеристики процесса. В настоящее время становится очевидным, что при интепретации результатов измерений в целом ряде реагирующих систем совершенно необходимо учитывать возможность появления неравновесности, которая при выполнении определенных условий может привести к совершенно новым кинетическим особенностям реакций.

Институт химической физики Академии наук СССР Москва

Поступило 47 V 1973

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> Н. Н. Семенов, А. Е. Шилов, Кинетика и катализ, 6, 3, 1965. <sup>2</sup> И. С. Заслонко, С. М. Когарко, Е. В. Мозжухин, Кинетика и катализ, 12, 829 (1972). <sup>3</sup> И. С. Заслонко, С. М. Когарко, Е. В. Мозжухин, ДАН, 202, 1124 (1972). <sup>4</sup> И. С. Заслонко, С. М. Когарко, Е. В. Мозжухин, ДАН, 210, 133 (1973). <sup>5</sup> М. С. Lin, S. H. Bauer, J. Chem. Phys., 50, 3377 (1968). <sup>6</sup> Р. И. Солоухин, ДАН, 194, № 1, 143 (1970). <sup>7</sup> L. I. Drummond, Austr. J. Chem., 21, 2631 (1968). <sup>8</sup> Н. А. О1shewski, I. Тгое, Н. Wagner, Ber. Bunsenges. phys. Chem., 70, 450 (1966). <sup>9</sup> В. Н. Кондратьев, Константы скорости газофазных реакций, «Наука», 1970. <sup>10</sup> И. С. Заслонко, С. М. Когарко, Ю. В. Чириков, Прикл. мех. и техн. физ., № 2 (1972).