УДК 577.15.24

БИОХИМИЯ

А. В. ПУШКИН, З. Г. ЕВСТИГНЕЕВА, член-корреспондент АН СССР В. Л. КРЕТОВИЧ

ВЛИЯНИЕ МАГНИЯ И МАРГАНЦА НА АКТИВНОСТЬ ГЛЮТАМИНСИНТЕТАЗЫ ИЗ СЕМЯН ГОРОХА

Глютаминсинтетаза (ГС) (Н.Ф. 6.3.1.2.) — один из ключевых ферментов азотного обмена растений, микроорганизмов и животных — катализирует синтез глютамина из глютаминовой кислоты и аммония в присутствии $AT\Phi$ и ионов Me^{2+} :

L-глютамат + NH₄+ + AT $\Phi \rightleftarrows L$ -глютамин + АД $\Phi + \Phi_{\text{веорг}}$. (1)

В работах (1-10) и других исследователей было изучено влияние ионов Me²⁺ на активность ГС животного, растительного и бактериального происхождения. Из этих работ можно сделать вывод о том, что ионы металлов необходимы как для образования активной конформации фермента, так и для участия непосредственно в каталитическом процессе в виде комплекса металла с АТФ. В недавно вышедших работах Гинабург (11, 12) было показано, что присоединение Mg2+ и Mn2+ к ГС из E. coli происходит в течение определенного промежутка времени, причем на ферменте можно выделить два вида центров для связывания как Mg^{2+} , так и Mn^{2+} , которые различаются по степени сродства к данному катиону металла. Для ГС из семян гороха было установлено (°), что Mn²⁺ имеет значительно более высокое сродство к ферменту, чем Mg^{2+} ; в то же время ΓC гороха в присутствии Mg^{2+} в 3 раза активнее, чем с Mn^{2+} . Кроме того, было показано, что активирование ионами Mg2+ и Mn2+ зависит от соотношения концентраций катиона металла и ATФ, а именно: для Mn²⁺ и ATФ оптимальным является соотношение их концентраций 1:1, для Mg^{2+} и $AT\Phi 5:1.$

Активность ГС гороха ингибируется при добавлении Mn^{2+} в опытную смесь, содержащую Mg^{2+} , причем это ингибирование происходит не за счет уменьшения концентрации комплекса $Mg^{2+} - AT\Phi$ (9).

Аналогичный эффект наблюдается и при добавлении Mg²⁺ в смесь, оп-

тимальную для проявления активности с Mn²⁺.

Совокупность приведенных выше данных о характере активирующего действия Mg^{2+} и Mn^{2+} свидетельствует в пользу существования двух конформаций ΓC — одна конформация существует и активна в присутствии Mg^{2+} , другая — Mn^{2+} .

Поскольку клетка, как правило, содержит как Mg^{2+} , так и Mn^{2+} , изучение активирования ΓC при одновременном присутствии Mg^{2+} и Mn^{2+} в

опытной смеси представляет определенный интерес.

Данная работа посвящена исследованию влияния Mg^{2+} и Mn^{2+} при одновременном их присутствии в опытной смеси на активность ΓC из семян гороха. Были использованы различные количественные соотношения Mg^{2+} и Mn^{2+} и определены для них соответствующие оптимумы pH.

Определение активности ГС проводили по образованию ортофосфата (13), выделяющегося в эквимолярных количествах с глютамином в реакции (1). В качестве ферментного препарата использовали очищенный в 750 раз препарат фермента из семян гороха с удельной активностью 400 µмол ортофосфата на 1 мг белка за 15 мин. 1 мл ферментного препарата содержал в среднем 0,05 мг белка.

Инкубационная смесь для определения активности ГС в присутствии Mg^{2+} состояла из: 0,125 M трис-HCl буфера; 0,0625 M моноглютамата Na; 0,0625 M NH₄Cl; 0,00625 M ATФ; 0,030 M MgSO₄, ферментного препарата в количестве, необходимом для образования 0,04—0,8 μ мол фосфата в пробе объемом 1,6 мл за 15 мин. инкубации при 37°; pH инкубационной смеси 7.2.

Инкубационная смесь для определения активности энзима в присутствии $\mathrm{Mn^{2+}}$ состояла из: 0,125 M трис-HCl буфера; 0,0625 M моноглютамата Na ; 0,0625 M $\mathrm{NH_4Cl}$; 0,0016 M $\mathrm{AT\Phi}$; 0,0016 M $\mathrm{MnSO_4}$; ферментного препа-

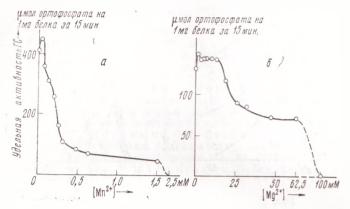


Рис. 1. Влияние ${\rm Mn^{2+}}$ (a) и ${\rm Mg^{2+}}$ (б) на активность ГС гороха

рата в количестве, необходимом для образования 0.04-0.8 µмол фосфата в пробе объемом 1.6 мл за 15 мин. инкубации при 37° ; рН инкубационной смеси 5.5.

В работе были использованы следующие реактивы: *L*-моноглютамат Na фирмы «Адзиномото», ATФ — натриевая соль, этилендиаминтетрауксусная кислота динатриевая соль (ЭДТА) фирмы «Reanal»; MnSO₄ · 4H₂O₅

(NH₄) 6Mo₇O₂₄·4H₂O фирмы «Laborchemie Apolda».

На рис. 1a представлена кривая зависимости Γ C от концентрации $\mathrm{Mn^{2+}}$, добавленного в инкубационную смесь, оптимальную для проявления активности с $\mathrm{Mg^{2+}}$, т. е. содержащую 30 мM $\mathrm{Mg^{2+}}$. Как видно из рисунка, $\mathrm{Mn^{2+}}$ в концентрации 0,03 мM вызывает активирование фермента. Однако при концентрации $\mathrm{Mn^{2+}}$ выше 0,03 мM, происходит резкое падение активности Γ C до 25% от исходной, после чего при дальнейшем повышении концентрации $\mathrm{Mn^{2+}}$ активность уменьшается значительно медленнее.

На рис. 16 представлена кривая зависимости активности Γ С от концентрации Mg^{2+} , добавленного в инкубационную смесь, оптимальную для проявления активности с Mn^{2+} , т. е. содержащую 1,6 мM Mn^{2+} . Как видно из рисунка, Mg^{2+} при его концентрации до 1 мM вызывает увеличение активности фермента, однако дальнейшее увеличение концентрации этого катиона в инкубационной смеси вызывает падение активности Γ С и при концентрации Mg^{2+} 100 мM активность энзима равна 0.

Из сравнения данных, представленных на рис. 1a, 6, можно видеть, что активность ΓC в присутствии Mg^{2+} примерно в три раза выше, чем в присутствии Mn^{2+} . Добавление незначительных количеств другого катиона в обоих случаях приводит к некоторому возрастанию активности, но дальнейшее увеличение концентрации добавляемого катиона вызывает инги-

бирование фермента.

Можно думать, что ингибирование, наблюдаемое при добавлении Mn^{2+} в опытную смесь, содержащую Mg^{2+} , обусловлено изменением конформации ΓC , в то время как ингибирование, наблюдаемое при добавлении Mg^{2+} в смесь с Mn^{2+} , связано и с изменением конформации энзима, и с на-

рушением соотношения концентраций Me^{2+} и $AT\Phi$ за счет конкуренции между Mg^{2+} и Mn^{2+} за связывание $AT\Phi$. Эти предположения основаны на том, что количества добавляемого Mn^{2+} (рис. 1) значительно меньше, чем количества присутствующего Mg^{2+} , и Mn^{2+} практически не может влиять на соотношение концентраций Mg^{2+} и $AT\Phi$. При добавлении же Mg^{2+} в смесь, оптимальную для проявления активности ΓC с Mn^{2+} , уменьшение активности происходит при концентрациях Mg^{2+} много больших,

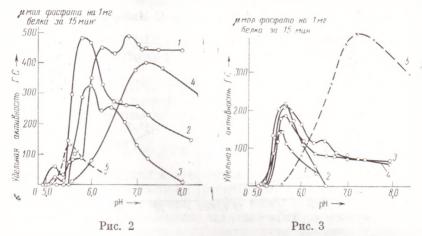


Рис. 2. рН-кривые для смеси, оптимальной для проявления активности с $\mathrm{Mg^{2+}}$, содержащей добавки $\mathrm{Mn^{2+}}$. $1-[\mathrm{Mg^{2+}}]=30$ мM; $[\mathrm{Mn^{2+}}]=0.03$ мM; $[\mathrm{AT\Phi}]=6.25$ мM; 2-30; 0.125; 6.25; 3-30; 0.625; 6.25; 4-30; 0.625; 6.25; 5-0; 1.6; 1.6

Рис. 3. рН-кривые для смеси, оптимальной для проявления активности с Mn²+, содержащей добавки Mg²+. $I-[\mathrm{Mn²+}]$; = 1,6 мM; $[\mathrm{Mg²+}]$ = 0 мM; $[\mathrm{AT\Phi}]$ = 1,6 мM; 2 — 1,6; 1,6; 1,6; 3 — 1,6; 18,75; 1,6; 4 — 1,6; 62,5; 1,6; 5 — 0; 30; 6,25

чем концентрация Mn^{2+} , что заставляет учитывать возможное падение активности энзима из-за уменьшения концентрации комплекса $Mn^{2+} - AT\Phi$.

Из данных, приведенных на рис. 2 и 3, можно видеть, что при одновременном присутствии в опытной смеси Mg^{2+} и Mn^{2+} происходит не только изменение активности Γ С по сравнению с активностью в смеси с одним катионом, отмеченное выше, но и смещение оптимумов pH в область более физиологических значений этого показателя. Так, оптимум pH для Γ С, активируемой Mg^{2+} , при добавлении Mn^{2+} сдвигается из слабощелочной области в слабокислую, а для Γ С, активируемой Mn^{2+} , при добавлении Mg^{2+} наблюдается изменение оптимума pH в обратном направлении. Проведенные нами определения содержания Mg и Mn в семенах гороха методом эмиссионного спектрального анализа * показали, что количество Mg примерно в 150 раз выше, чем количество Mn, что в какой-то мере коррелирует с соотношением концентраций этих катионов, используемых нами в опытах.

Как известно, Mg^{2+} и Mn^{2+} могут взаимозаменять друг друга в качестве кофакторов ряда ферментов. Наши данные показывают, что одновременное присутствие в опытной смеси обоих кофакторов Mg^{2+} и Mn^{2+} может оказывать и активирующее, и ингибирующее действие на ΓC из семян гороха, что, безусловно, имеет значение для внутриклеточной регуляции активности ΓC . Характер действия зависит от соотношения концентраций катионов этих металлов. Интересно отметить, что увеличение

^{*} Анализ сделан на кафедре биохимии и зерноведения Московского технологического института пищевой промышленности В. Киреевым.

активности ГС в смеси с двумя катионами по сравнению со смесью с одним происходит при постоянной концентрации АТФ. В условиях активирующего действия двух кофакторов оптимумы рН для Mg^{2+} -смеси и для Mn^{2+} -смеси сдвинуты в область более физиологических значений рН.

Институт биохимии им. А. Н. Баха Академии наук СССР Московский технологический институт пищевой промышленности Поступило 7 V 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ L. S. Hubbard, E. R. Stadtman, J. Bacteriol., 94, 4, 1007 (1967). ² T. F. Deuel, E. R. Stadtman, J. Biol. Chem., 245, 20, 5206 (1970). ³ C. A. Woolfolk, B. Shapiro, E. R. Stadtman, Biochem. Biophys. Res. Commun., 116, 177 (1966). ² S. S. Tate, A. Meister, Proc. Nat. Acad. Sci. U.S.A., 68, 4, 781 (1971). ⁵ E. M. Lignowski, W. E. Splittstoesser, K. H. Chou, Plant and Cell Physiol., 12, 733 (1971). ⁶ T. Kanamori, H. Matsumoto, Arch. Biochem. and Biophys., 125, 404 (1972). ⁻ W. H. Elliott, Biochem. J., 49, 106 (1951). ⁶ K. Schnackerz, L. Jaenicke, Hoppe-Seyler's Zs. physiol. Chem., 347, 1-3, 127 (1966). ⁶ 3. Г. Евстигнеева, А. В. Пушкин, В. Л. Кретович, Физиол. раст., 19, 4, 729 (1972). ¹ В. Л. Кретович, Е. А. Громыко, З. Г. Евстигнеева, ДАН, 207, № 6, 1479 (1972). ¹ J. В. Нипt, Р. D. Ross, А. Ginsburg, Biochemistry, 11, 20, 3716 (1972). ¹ J. В. Нипt, А. Ginsburg, Biochemistry, 11, 20, 3723 (1972). ¹ A. В. Пушкин, З. Г. Евстигнеева, В. Л. Кретович, Прикл. биохим. микробиол., 8, 86 (1972).