Доклады Академии наук СССР 1973. Том 212, № 2

УДК 538.113:541.515

ХИМИЯ

Академик Г. А. РАЗУВАЕВ, Г. А. АБАКУМОВ, В. К. ЧЕРКАСОВ

Э.П.Р. ИССЛЕДОВАНИЕ СВОБОДНЫХ **β-ХЛОРСОДЕРЖАЩИХ** НИТРОКСИДНЫХ РАДИКАЛОВ В РАСТВОРЕ

В предыдущих работах ($^{1-3}$) было показано, что реакция окисления арил-N-окситриазенов

$$A_{r}-N=N-N(OH)R \xrightarrow{PbO_{2}} A_{r}+N_{2}+O=N-R$$
 (I)

является источником свободных арильных радикалов в растворе. Одновременное образование в процессе окисления нитрозосоединения, обладающего свойствами активного акцептора свободных радикалов (4, 5), дает возможность регистрировать первичные арильные радикалы или радикалы, возникающие при их реакции с растворителем, в виде стабильных в рас-

творе нитроксидных производных R-N . Анализ сверхтонкой струк-

туры (с.т.с.) спектров э.п.р. этих радикалов дает возможность установить Таблица 1 Параметры спектров э.п.р. β-хлорсодержащих нитроксидных радикалов

Радикал	А _N , э	A ^β _{Cl} , θ	Растворитель
O. Cl₃C−N∠ Bu ^t	12,9	2,2	CHCl ₃ ; CCl ₄
$ ext{HCl}_2 ext{C-N} igg _{ ext{Bu}^t}$	12,2	$3,25- Cl^{35}$ $2,70- Cl^{37}$	CH ₂ Cl ₂
$0.*$ $_{\mathrm{Bu}^{t}}^{\mathrm{O}}$	11,9	8,35— Cl ³⁵ 6,90— Cl ³⁷	CH ₂ ClJ
HCl ₂ C—Cl ₂ C—N Bu ^t	12,8	4,50— Cl ₁ 0,80— Cl ₂	CHCl2—CHCl2
$^{ m O}$ h—(Cl ₂ C—Cl ₂ C) $_n$ N $<$ $_{ m Bu}{}^{l}$	12,0	$4,20 - Cl^{35}$ $3,50 - Cl^{37}$	CCl ₂ =CCl ₂
H ₂ ClC—HClC—N Bu ¹	12,1	7,0— Cl ³⁵ 5,80— Cl ³⁷	CH ₂ Cl—CH ₂ Cl
O∙ H₃C)₂CIC—N Bu ^t	12,1	$7,0- Cl^{35}$ $5,80- Cl^{87}$	CH ₃ —CHCl—CH ₃ ,

как природу присоединяющихся к нитрозосоединению радикалов R', так и строе-

ние нитроксидных радикалов.

Данная работа посвящена изучению свободных радикалов, образующихся при окислении 1-фенил-3-трет.-бутил-3-окситразена (I) в некоторых моно- и полихлор. содержащих углеводородах. Использовавшиеся в качестве растворителей хлоруглеводороды, соответствующие витроксидные радикалы и параметры спектров э.н.р. приведены в табл. 1. Во всех случаях реакция окисления проводилась при комнатной температуре непосредственно перед регистрацией сигнала э.п.р. В качестве окислителя использовалась двуокись свинца. Применявшиеся растворители марки ч.д.а. подвергались дополнительной очистке по известным методикам; хлорйодметан был спитезирован по способу, описанному в работе (6). Радиоспектрометрические измерения проводились на отечественном приборе РЭ-1301. Для температурных исследований использовалась система термостатирования образца ТС-1 ИХФ CCCP.

Окисленпе (I) в хлороформе и CCl, приводит к образованию радикала

$$ClC_3$$
—N (II), спектр э.п.р. которого от-

ражает взаимодействие неспаренного электрона с одним ядром азота N^{14} и тремя эквивалентными ядрами хлора. Значения констант сверхтонкого взаимодействия

103 H

Рпс. 1. Спектр э.п.р. радикала (IV), наблюдающийся при окислении (I) в хлорйодметане

(с.т.в.) $a_{\rm N}$ и $a_{\rm Cl}^{\beta}$ радикала (II) соответствуют данным, полученным ранее (7).

При окислении (I) в хлористом метилене наблюдается многокомпо-

нентный спектр э.п.р., принадлежащий радикалу
$$HCl_2C-N$$
 (III) $B\mathbf{u}^t$

Анализ с.т.с. спектра э.п.р. показывает, что в нитроксиде (III) неспаренный электрон взаимодействует с одним ядром N^{14} и двумя эквивалентными ядрами хлора. С.т.в. с β -протоном не наблюдается. Поскольку природный хлор существует в виде двух изотопов Cl^{35} и Cl^{37} с одинаковым спином ядер $I={}^3/{}_2$, но разной естественной распространенностью (Cl^{35} 75,4%: Cl^{37} 24,6%) и различными магнитными моментами ядер ($\mu_{Cl^{35}}=0,8219$; $\mu_{Cl^{37}}=0,6841$) в наблюдаемом спектре э.п.р. радикала (III) содержатся линии, связанные с двумя изотопными формами:

$$\mathrm{HCl_{2}^{35}C-N}$$
 Bu^{t} $\mathrm{O^{\circ}}$ Bu^{t} Bu^{t} Bu^{t}

Относительное содержание этих форм составляет 56,8% для (IIIa) и

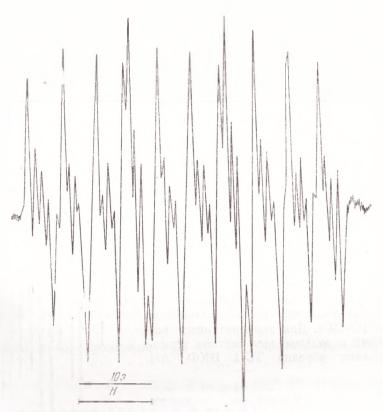


Рис. 2. Спектр э.п.р. радикала (V), наблюдающийся при окислении (I) в тетрахлорэтане

37,2% для (IIIb). Доля изотопной формы $HCl_2^{37}C-N$ мала, 6% по сравнению с (IIIa) и (IIIb), поэтому соответствующие ей линии не проявляются в спектре э.п.р. Отношение констант с.т.в. $\frac{a_{Cl}^{37}}{a_{Cl}^{35}}=0,83$ соответствует отношению магнитных моментов $\frac{\mu_{Cl}^{37}}{\mu_{Cl}^{35}}=0,832$.

Радикал H_2 CIC—N (IV) образуется при окислении (I) в хлорйодметане. Спектр э.п.р., изображенный на рис. 1, представляет собой суперпозицию спектров двух изотопных форм радикала (IV): H_2 Cl35C—N и Bu^t

 $_{\rm Bu}^{\rm Cl^{37}C-N}$. Каждый из этих спектров э.п.р. содержит линии, соот-

ветствующие с.т.в. неспаренного электрона с ядром N^{14} , ядром хлора (C^{185} или Cl^{37}) и двумя эквивалентными протонами.

При окислении (I) в тетрахлорэтане наблюдается спектр э.п.р. ради-

кала
$$HCl_2C-Cl_2C-N$$
 (V) (рис. 2). С.т.с. спектра э.п.р. нитрокси-

да (V) образована за счет взаимодействия неспаренного электрона с ядром N^{14} и ядрами двух неэквивалентных атомов хлора. В этом случае, так же как и для радикала (III), возможно существование нескольких изотопных форм. Однако, как показывает анализ теоретического спектра, соотношение констант с.т.в. $a_{\text{Cl}^{35}}$ и $a_{\text{Cl}^{37}}$ в данном случае таково, что в спектре э.п.р. видны компоненты, соответствующие только преобладающей форме с двумя изотопами Cl^{35} . Наличие других изотопных форм проявляется только в замазывании с.т.с. спектра э.п.р.

Окисление (1) в тетрахлорэтилене приводит к образованию радикала

$$Ph$$
— $(Cl_2C-Cl_2C)_nN$ (VI), с.т.с. спектра э.п.р. отражает взаимодей-

ствие неспаренного электрона с ядром N^{14} и двумя эквивалентными ядрами хлора. Так же, как и в случае нитроксида (III), в спектре э.п.р. содержатся компоненты от двух изотопных форм радикала.

Нитроксидные радикалы, содержащие один β-атом хлора, получаются при окислении (I) в 1,2-дихлорэтане и 2-хлорпропане, спектры э.п.р.

заны с взаимодействием неспаренного электрона с ядром N^{14} и ядром одного атома хлора (Cl^{35} и Cl^{37}). С.т.в. с β -протоном в спектре э.п.р. радикала (VII) не наблюдается.

Температурные исследования спектров э.п.р. полученных нитроксидных радикалов (температурный интервал в каждом случае определялся природой используемого растворителя) показали, что присущее заторможенному вращению альтернантное уширение линий в спектрах э.п.р. β -хлорсодержащих нитроксидных радикалов не наблюдается. Этот факт, так же как и небольшое изменение константы с.т.в. $a_{\text{сl}}^{\beta}$ при изменении температуры (для радикала (III), например, a_{cl}^{β} уменьшается на 0,1 э при повышении температуры от -60° до $+20^{\circ}$ С), свидетельствует о том, что каждый из изученных радикалов существует в единственной устойчивой конформации. Исключение представляет нитроксид (II), так как эквивалентность трех атомов хлора в спектре э.п.р. этого радикала ясно указывает на свободное вращение трихлорметильной группы вокруг связи С—N.

Отсутствие с.т.в. с β -протоном в радикалах (III) и (VII), очевидно, вызвано тем, что атом водорода в этих радикалах находится близко от узловой плоскости р-орбитали атома азота, занятой неспаренным электроном. В таком положении взаимодействие неспаренного электрона с β -протоном минимально.

Институт химии Академии наук СССР Горький

Поступило 6 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. А. Абакумов, В. К. Черкасов, Г. А. Разуваев, ДАН, 197, 823 (1971).
² Г. А. Разуваев, Г. А. Абакумов, В. К. Черкасов, ДАН, 198, 601 (1971).
³ Э. П. Санаева, В. К. Черкасов и др., ДАН, 205, 370 (1972).
⁴ К. Магиуата, R. Тапікада, R. Goto, Bull. Chem. Soc. Japan, 37, 1893 (1964).
⁵ А. Маског, Тh. А. J. W. Wajer et al., Tetrahedron Letters, 1966, 2115.
⁶ H. Finkelstein, Ber., 43, 1528 (1970).
⁷ M. J. Perkins, P. Ward, J. Chem. Soc. B, 1970, 395.