ФИЗИЧЕСКАЯ ХИМИЯ

Е. С. РУДАКОВ

ВЛИЯНИЕ СРЕДЫ НА СКОРОСТЬ S_N 1-РЕАКЦИЙ. РАЗДЕЛЕНИЕ ЭФФЕКТОВ СОБСТВЕННО СОЛЬВАТАЦИИ И КУЛОНОВСКОГО ВЗАИМОДЕЙСТВИЯ В ПЕРЕХОДНОМ СОСТОЯНИИ

(Представлено академиком В. Н. Кондратьевым 11 IV 1973)

Эффекты среды в S_N 1-реакциях $RX \to R^+ \dots X^- \to R^+ + X^-$ передаются уравнением (1)

$$k_s = k_g \alpha / \alpha_{\neq}, \quad \alpha = [RX]_g / [RX]_s, \quad \alpha_{\neq} = [R^+ \dots X^-]_g / [R^+ \dots X^-]_s, \quad (1)$$

где k_s и k_g — константы скорости в среде s и газе (g), α и α_{+} — коэффициенты распределения газ—среда для субстрата и переходного состояния. Поскольку k_g и α — измеряемые величины, для расчета k_s необходим учет зависимости α_{+} от среды. Рассмотрим приближенное решение этой задачи на примере сольволиза трет.-бутилгалогенидов (R = трет.-Bu, X = Cl. Br. J) при следующих предположениях.

1. Переходное состояние S_N 1-реакции — тесная ионная пара с расстоянием $l_{R-X}=r_R-r_X$, равным сумме кристаллографических раднусов

2. Изменение химического потенциала $\Delta\mu$ при переносе пары $R^+\dots X^-$ из газа в среду s

состоит из кулоновского и собственно сольватационного вкладов

$$\Delta \mu_{\neq}^{0} = RT \ln \alpha_{\neq} = \frac{Ne^{n}}{r_{n} + r_{x}} \left(1 - \frac{1}{D} \right) + G_{R^{*}...X^{-}}^{*}.$$
 (3)

Первый учитывает кулоновское взаимодействие в ионной паре при изменении диэлектрической проницаемости D. Второй — $G_{\mathbb{R}^{+3}\dots \mathbb{R}^{-}}$ изменение энергии локальных сольватационных взаимодействий $\mathbb{R}^{+}\dots$ и $X^{-}\dots s$, условно показанных в уравнении (2), при изменении s. Природа сольватационного взаимодействия здесь не рассматривается: в принципе оно также может быть электростатическим.

3. Координационные числа ионов $n_{\rm R}$, $n_{\rm X}$ и энергии локальных «связей» ${\rm R}^+\dots s$ и ${\rm X}^-\dots s$ одинаковы для разделенных ионов и ионов в паре ${\rm R}^+\dots {\rm X}^-$. В рамках координационной модели сольватации $G^*_{\rm R}+\dots {\rm X}^-$ составляет часть, близкую к единице, полной энергии сольватации ионов, а именно

$$G_{R^*...X^-} = \frac{n-1}{n} G_{HOHM}, \tag{4}$$

где $G_{\text{ноны}}^{s} = G_{\text{R}^{*}}^{s} + G_{\text{X}^{*}}^{s}$, поскольку одно место в оболочках R^{+} и X^{-} в

паре (2) занято связью $R^+ \dots X^-$. В (4) принято также $n_R = n_X = n$.

4. Термодинамические функции сольватации иона трет.-Вu⁺ (эффективный радиус $r_{\rm R}=1.8\,{\rm \AA}$ (²)) принимаются такими же как для Cs⁺ ($r=1.65\,{\rm \AA}$). Прямых данных о сольватации R⁺ нет.

Из (1), (3), (4) получаем зависимость k_s от среды и природы X.

$$RT \ln \frac{k_s}{k_g} = RT \ln \alpha_s - \frac{n-1}{n} G_{\text{HOHM}}^s - \frac{Ne^2}{r_R + r_X} \left(1 - \frac{1}{D} \right). \tag{5}$$

Выбирая в качестве стандарта воду (w), подставляя значения констант при 25° и объединяя известные слагаемые в левой части (Q), имеем

$$Q = \lg \frac{k_w}{k_s} - \lg \frac{\alpha_w}{\alpha_s} + \frac{243}{r_R + r_X} \left(\frac{1}{D_s} - \frac{1}{D_w} \right) = \frac{1}{1,365} \frac{n-1}{n} \Delta G_{\text{ноны}}^s, \tag{6}$$

где $\Delta G_{\text{ионы}}^s = G_{\text{сs}}^s + G_{\text{X}}^s - G_{\text{cs}}^w + G_{\text{X}}^w$. Ниже даны три независимых способа проверки (5). Соотношение (6) между Q и $\Delta G_{\text{ионы}}^s$ должно быть общим и линейным во всем диапазоне вариации s и X. Хотя n имеет смысл полуэмпирической константы, значение n, найденное из (6), должно лежать в разумных пределах 4-8. Наконец, из (5) при n= const следует уравнение (7) для зависимости энергии активации E_s от среды и X, которое также должно выполняться:

$$E_{s} = E_{g} + L_{\text{RX}} - RT + \frac{Ne^{2}}{l_{\text{R-X}}} \left(1 - \frac{1}{D} - \frac{T}{D^{2}} \frac{dD}{dT} \right) + \frac{n-1}{n} H_{\text{вовы}}^{s}, \tag{7}$$

 $L_{\rm RX}$ — теплота растворения RX, $H_{\rm ноны}^s$ — сумма абсолютных энтальпий сольватации ионов Cs+ и X-.

Сравнение с экспериментом. Полные наборы данных имеются пока для немногих систем (табл. 1). В расчетах приняты значения r_x = 1,81; 1,96 и 2,20 (³) для Cl $^-$, Br $^-$ и J $^-$; r_R = 1,80 (²) и последние данные (⁴) по абсолютным термодинамическим потенциалам гидратации ионов: G^w = -67,5; -75,8; -72,5 и -61,4 ккал/моль для Cs $^+$, Cl $^-$, Br $^-$ и J $^-$ соответственно. Для других сред G^s найдены с помощью рассчитанных Паркером (⁵) сольватационных коэффициентов активности понов в сре-

де s относительно метанола (M): $RT\ln^{\rm M}\gamma_{\rm нон}^{\rm H}=G_{\rm нон}^{\rm M}-G_{\rm нон}^{\rm M}$. Значения $\lg k_g$ (сек $^{-1}$) = -19.3 ± 0.4 ; -16.7 ± 0.3 ; -14.2 ± 0.3 для гетеролиза трет-BuCl, трет-BuBr и трет-BuJ в газе при 25° , а также $E_g=45.0\pm1.2$ для трет.-BuCl, получены усреднением данных различных авторов, суммированных в обзоре (6). Значения k для других сред взяты в работах ($^{7-11}$). Значения α рассчитаны по коэффициентам активности RX, приведенным в (5 , 7 , 12), или оценены в предположении, что $\lg \alpha$ для разных RX — аддитивная функция групп R и X. Для газовой фазы $\alpha \equiv 1$.

В согласии с уравнением (6), между
$$Q$$
 и $\frac{1}{2.3 RT} \Delta G_{\text{ноны}}^{s}$ (табл. 1) име-

ет место весьма точная пропорциональная зависимость, которая охватывает небольшие изменения Q при переходе от воды к другим растворителям, значительные изменения Q при переходе от воды к газу и является общей для RCl, RBr и RJ. Наклон этой линии $(n-1)/n=0.792\pm0.01$ отвечает формальному координационному числу n=4.8, промежуточному между тетраэдрическим $(n=4,\ (n-1)/n=0.75)$ и октаэдрическим $(n=6,\ (n-1)/n=0.83)$. Стандартное отклонение рассчитанных при n=4.8 и опытных значений $\log (k_w/k_s)$ табл. 2) для всех систем ±0.4 , что лежит в пределах точности данных.

Набор надежных величин для расчета энергии активации имеется только для реакции трет.-BuCl в воде. Подставляя в (7) $E_g = 45.0$;

Значения k_w/k_s , α_w/α_s , $\Delta G^s_{\text{ионы}}$, Q для гетеролиза трет.-ВиХ в разных средах, 25°. Вклады сольватации основного состояния I, переходного состояния II и кулоновского взаимодействия в переходном состоянии III $(\text{ДМ}\Phi - \text{диметил}\Phi)$

RX среда	D	Q	$\frac{\Delta G_{\text{ИОНЫ}}^8}{2.3 RT}$	$\lg \frac{\alpha_w}{\alpha_s}$	0,792 ΔG ⁸ _{ИОНЕ} 2,3 RT II	$\frac{243}{r_{\rm R} + r_{\rm X}} \left(\frac{1}{D_w} - \frac{1}{D_s} \right)$	$\frac{\lg \frac{k_w}{k_s}}{\text{pact.}} = \frac{1}{2}$
третBuCl							
Вода Формамид Метанол ДМФ Газ	78,5 109,5 32,6 36,7 -1,0	1,0 3,3 5,4 84,1	0 1,5 3,6 6,8 105,0	$\begin{bmatrix} 0 \\ 1,7 \\ 2,5 \\ 2,6 \\ 0,2 \end{bmatrix}$	0 1,2 2,9 5,4 83,3	$\begin{array}{ c c } & 0 \\ +0,2 \\ -1,2 \\ -1,0 \\ -66,5 \end{array}$	$\left \begin{array}{c c}0&0\\3,1&2,9\\4,2&4,6\\7,0&7,0\\17,0&17,8\end{array}\right $
mnom BuBn							
Вода Метанол ДМ Ф Газ	78,5 32,6 36,7 1,0	$ \begin{vmatrix} 0 \\ 2,8 \\ 3,5 \\ 80,4 \end{vmatrix} $	$\begin{bmatrix} 0 \\ 3,2 \\ 4,8 \\ 102,5 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2,8 \\ 2,8 \\ 0 \end{bmatrix}$	0 2,5 3,8 81,3	$\begin{bmatrix} 0 \\ -1,2 \\ -0,9 \\ -63,8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \\ 4,1 & 4,4 \\ 5,5 & 5,4 \\ 17,5 & 16,6 \end{bmatrix}$
третВиЈ							
Вода Газ	78,5 1,0	0 74,5	$\begin{array}{c} 0 \\ 94,5 \end{array}$	0 0	0 74,8	0 60,0 Таблица 2	$\begin{array}{c c} 0 & 0 \\ 14,8 & 14,5 \end{array}$
	_		1			Таолица 2	
$L_{\mathrm{RX}}-\mathrm{\it RT}$			$\frac{n-1}{n}H_1$	доны Т	$\frac{Ne^2}{R-X} \left(\frac{1}{D} - \frac{1}{D} \cdot \frac{T}{D^2} \frac{dD}{dT} \right)$ III	E_w , ккал/моль найде- вычислено	
		7,6	-121	,4	92,5	22,8(11) 23,7	

 H_{Cs}^{w} + H_{Cr}^{w} =-153,3 (4); L_{RCI} = 8,2 (7); RT = 0,6; $T/D\,dD/dT$ = -1,37 (13) и (n-1)/n= 0,792, получаем следующие значения вкладов сольватации основного состояния I, переходного состояния II и кулоновского взаимодействия III (см. табл. 2).

Роль сольватационного и кулоновского взаимодействия. Результаты всех расчетов находятся в хорошем согласии с экспериментом и ясно подтверждают положения о ионно-парной структуре $S_N 1$ -переходного состояния и о важности разделения сольватации $R^+ \dots X^-$ на собственно сольватационную и кулоновскую части. Приведенные данные дают представление о роли вкладов I, II, III. Значения $RT \ln (k_w/k_g)$ и $E_g - E_w$ (~ 20 ккал/моль) определяются конкуренцией больших (~ 100 ккал/моль) и противоположных по знаку сольватационного II и кулоновского III вкладов. Соотношения $k_w > k_g$ и $E_w < E_g$ обусловлены преобладанием вклада II. При переходе от воды к другим полярным средам (табл. 1) направление изменения k определяется вкладами I и II. Вклад I для неводных сред примерно одинаков, изменение $\lg \alpha$ на 2-3 единицы при переходе от воды к другим средам обусловлено гидрофобными эффектами в воде (7). Кулоновский вклад III остается малым по крайней мере до тех пор, пока D > 10. Таким образом, сольватацион-

ные вклады, главным образом II, во всех случаях определяют направле-

ние суммарного эффекта.

Уравнение (5) ведет к неожиданному, на первый взгляд, выводу, что в случае закрепленной сольватации (вклады I и II) с ростом D скорость реакции должна снижаться вследствие кулоновской дестабилизации переходного состояния. Обычно, но далеко не всегда (8 , 14), k растет с ростом D, что вызвано, несомненно, существованием вторичных корреляций между $G^s_{\text{поны}}$ и D для жидкостей различной природы. Это обстоятельство до сих пор вносило изрядную путаницу при трактовке влияния среды на $S_N 1$ -реакции.

Недавно (²) удалось реализовать противоположный случай — изменение локальной сольватации при закрепленной D. Был изучен сольволиз трет.-ВиХ под действием акваионов металлов $RX + M^+ \to R^+ \dots X^- \dots$ $M^+ \to R^+ + XM$, отличающийся тем, что одна из молекул растворителя в сфере $R^+ \dots X^-$ заменена ионом M^+ , имеющим более высокое сродство к X^- . Теория (²), находящаяся в полном согласии с экспериментом, основана на тех же предположениях, как и эта статья (кроме п. 4) и ведет к уравнению $k_{\rm M} = k_s K_{\rm MX} \exp{(-Ne^2/RTDl_{\rm R-M})}$, устанавливающему четкую пропорциональность между константами скорости $k_{\rm M}$ и устойчивости комплекса $MX(K_{\rm MX})$. В этом случае при $K_{\rm MX} = {\rm const} \ k_{\rm M}$ растет с ростом D из-за снижения кулоновского отталкивания концевых групп R^+ и M^+ в тройнике $R^+ \dots X^- \dots M^+$.

Таким образом, представление о S_N 1-переходных состояниях как ионных парах и тройниках (2) открывает возможность термодинамического расчета скоростей, основанного на учете кулоновских и сольватационных

вкладов.

Автор выражает благодарность И. А. Коппелю и В. А. Пальма за обсуждение статьи.

Донецкое отделение физико-органической химии Института физической химии им. Л. В. Писаржевского Академии наук УССР Поступило 4 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. Глесстон, К. Лейдлер, Г. Эйринг, Теория абсолютных скоростей реакций, М., 1948. ² Е. С. Рудаков, И. В. Кожевников, Реакционная способность органических соединений, Тарту, 9, в. 1 (31), 165 (1972). ³ Справочник химика, 1, М.— Л., 1962, стр. 383. ⁴ Ж. Денуайс, К. Жоликер, В сборн. Современные проблемы электрохимии, М., 1971, стр. 11. ⁵ А. Л. Рагкег, Сhem. Rev., 69, 1 (1969). ⁶ А. Массоll, Chem. Rev., 69, 33 (1969). ⁷ Е. С. Рудаков, Термодинамика межмолекулярного взаимодействия, Новосибирск, 1968. ⁸ S. D. Ross, М. М. Labes, J. Am. Chem. Soc., 79, 4455 (1957). ⁹ А. Н. Fainberg, S. Winstein, J. Am. Chem. Soc., 79, 1603 (1957). ¹⁰ Е. А. Моеlwyn— Hughes, J. Chem. Soc., 1962, 4304. ¹¹ W. J. Albery, B. H. Robertson, Trans. Farad. Soc., 65, 980 (1969). ¹² М. Н. Аbraham, J. Chem. Soc. Perkin II, 1972, 1943. ¹³ Г. Харнед, Б. Оуэн, Физическая химия растворов электролитов, ИЛ, 1952, стр. 119. ¹⁴ Е. С. Рудаков, ДАН, 127, 1058 (1959).